Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pept Sci ; 18(4): 252-60, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22392880

RESUMEN

Colorectal cancers with metastatic potential secrete the glycoprotein carcinoembryonic antigen (CEA). CEA has been implicated in colorectal cancer metastasis by inducing Kupffer cells to produce inflammatory cytokines which, in turn, make the hepatic micro-environment ideal for tumor cell implantation. CEA binds to the heterogeneous ribonucleoprotein M (hnRNP M) which acts as a cell surface receptor in Kupffer cells. The amino acid sequence in CEA, which binds the hnRNP M receptor, is Tyr-Pro-Glu-Leu-Pro-Lys. In this study, the structure of Ac-Tyr-Pro-Glu-Leu-Pro-Lys-NH2 (YPELPK) was investigated using electronic circular dichroism, vibrational circular dichroism, and molecular dynamics simulations. The binding of the peptide to hnRNP M was also investigated using molecular docking calculations. The biological activity of YPELPK was studied using differentiated human THP-1 cells, which express hnRNP M on their surface and secrete IL-6 when stimulated by CEA. YPELPK forms a stable polyproline-II helix and stimulates IL-6 production of THP-1 cells at micromolar concentrations.


Asunto(s)
Antígeno Carcinoembrionario/química , Ribonucleoproteína Heterogénea-Nuclear Grupo M/agonistas , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antígeno Carcinoembrionario/farmacología , Línea Celular , Ribonucleoproteína Heterogénea-Nuclear Grupo M/química , Ribonucleoproteína Heterogénea-Nuclear Grupo M/metabolismo , Humanos , Enlace de Hidrógeno , Interleucina-6/biosíntesis , Simulación de Dinámica Molecular , Fragmentos de Péptidos/farmacología , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Propiedades de Superficie , Termodinámica
2.
J Phys Chem B ; 115(17): 4971-81, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21480621

RESUMEN

The conformational stability of the ß-hairpin miniprotein, CLN025, a variant of chignolin in which the N- and C-terminal glycines are replaced by tyrosines, in various concentrations of guanidinium chloride (GdmCl) and urea was examined by molecular dynamics simulations and electronic circular dichroism (ECD) spectropolarimetry. The peptide maintains its ß-hairpin conformation in GdmCl and urea solutions. In GdmCl, Gly7 influences the turn to reduce the number of Asp3-Gly7 H-bonds and the Tyr1-Trp9 H-bond is lost. The structure of the peptide is less stable in 3 M GdmCl than in water or 6 M GdmCl, because the number of Asp3-Thr8 and Tyr1-Tyr10 H-bonds are reduced and the Tyr2 side chain moves away from the Pro4 and Trp9 side chains and toward the Tyr10 side chain. This reduces the number of Tyr2-Pro4 CH-π interactions and Tyr2-Trp9 and Tyr1-Tyr10 aromatic-aromatic (Ar-Ar) interactions and increases the number of Tyr2-Tyr10 Ar-Ar interactions. In 6 M GdmCl at 300 and 333 K, the number of Tyr1-Tyr10 and Asp3-Thr8 H-bonds increases, but fewer structures have Tyr2-Pro4 CH-π and Tyr1-Tyr10 and Tyr2-Trp9 Ar-Ar interactions. In urea, Gly7 is in a mixture of ß-turn and random meander structures and the number of Asp3-Thr6 and Tyr1-Tyr10 H-bonds are reduced as are the number of Tyr2-Pro4 CH-π interactions and Tyr1-Tyr10 and Tyr2-Trp9 Ar-Ar interactions. In 4 M urea, a shorter turn places Gly7 into the ß-sheet region and Tyr10 is pushed out into the solvent. In 8 M urea, the number of Asp3-Glu5 H-bonds is increased and the ß-sheet is lost, but the electrostatic interaction between the charged termini is restored and a cation-π interaction between the indolyl ring of Trp9 and the positively charged N-terminus is formed. In 8 M urea at 333 K, the ß-hairpin conformation is almost lost. The structure of CLN025 is stable, because the weakly polar interactions and H-bonds maintain the ß-hairpin conformation in the various environments. CLN025 should not be considered a miniprotein, because it lacks a well-defined tertiary structure, it is resistant to denaturation, it does not have an increased heat capacity near its melting temperature, and the structures near and above the melting temperature retain a ß-hairpin conformation.


Asunto(s)
Guanidina/química , Oligopéptidos/química , Dicroismo Circular , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Urea/química
3.
Exp Mol Pathol ; 89(2): 140-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20471975

RESUMEN

The POK family of proteins plays an important role in not only embryonic development and cell differentiation, but also in oncogenesis. Leukemia/lymphoma-related factor (LRF) belongs to the POK family of transcriptional repressors and is also known as POK erythroid myeloid ontogenic factor (POKEMON), which binds to short transcripts of HIV-1 (FBI-1) and TTF-1 interacting peptide (TIP21). Its oncogenic role is known only in lymphoma, non-small cell lung carcinoma, and malignant gliomas. The functional expression of LRF in human breast carcinoma has not yet been confirmed. The aim of this study was to investigate and compare the expression of LRF in human breast cancer tissues and other human tumors. The expression of LRF mRNA transcripts and protein was observed in twenty human benign and malignant breast biopsy tissues. Expression of LRF was observed in several formalin-fixed tissues by immunohistochemistry and immunofluorescence. All malignant breast tissues expressed mRNA transcripts and protein for LRF. However, 40% and 15% benign breast biopsy tissues expressed LRF mRNA transcripts and protein, respectively. The overall expression of LRF mRNA transcripts and total protein was significantly more in malignant breast tissues than the benign breast tissues. LRF expression was also observed in the nuclei of human colon, renal, lung, hepatocellular carcinomas and thymoma tumor cells. In general, a significantly higher expression of LRF was seen in malignant tissues than in the corresponding benign or normal tissue. Further studies are warranted to determine the malignant role of LRF in human breast carcinoma.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/metabolismo , Neoplasias/metabolismo , Factores de Transcripción/metabolismo , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Femenino , Humanos , Inmunohistoquímica , Leucemia/metabolismo , Linfoma/metabolismo , ARN Mensajero/metabolismo
4.
J Phys Chem B ; 114(8): 3028-37, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20148510

RESUMEN

Molecular dynamics simulations of a beta-hairpin miniprotein, CLN025, were performed to examine the conformational stability of the peptide in H(2)O at 278, 300, 333, and 363 K, as well as in TFE, MeOH, and DMSO at 300 K. CLN025 is a variant of the Chignolin miniprotein, in which the terminal Gly residues of Chignolin are replaced with Tyr residues, which leads to a 29.7 K increase in melting temperature. The energy of the intramolecular interactions was calculated using DFT quantum chemical calculations at the BHandHLYP/cc-pVTZ level of theory. CLN025 maintained a beta-hairpin conformation in all environments. The beta-hairpin is stabilized by hydrogen bonds, an electrostatic interaction between the charged termini of the peptide, and weakly polar interactions. The interaction between the backbones of the N and C-terminal strands accounts for -97.32 to -120.87 kcal mol(-1) of the stabilization energy. The energies of the CH-pi interactions between Tyr2 and Pro4 were between -1.80 and -8.9 kcal mol(-1), and the energy of the Tyr2-Trp9 Ar-Ar interaction was between -0.43 and -8.11 kcal mol(-1). Increasing temperature caused the Tyr2-Pro4 CH-pi and the Tyr2-Trp9 and Tyr2-Tyr10 Ar-Ar interactions to become less favorable, but the Tyr1-Trp9 interaction became more favorable and played an important role in stabilizing the beta-hairpin of CLN025 that resulted in the increased melting temperature. Weakly polar interactions play an important role in the structure and stability of CLN025 and other proteins.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Teoría Cuántica , Conformación Proteica , Temperatura
5.
Biopolymers ; 93(5): 442-50, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19937759

RESUMEN

Electronic and vibrational circular dichroism are often used to determine the secondary structure of proteins, because each secondary structure has a unique spectrum. Little is known about the vibrational circular dichroic spectroscopic features of the beta-hairpin. In this study, the VCD spectral features of a decapeptide, YYDPETGTWY (CLN025), which forms a stable beta-hairpin that is stabilized by intramolecular weakly polar interactions and hydrogen bonds were determined. Molecular dynamics simulations and ECD spectropolarimetry were used to confirm that CLN025 adopts a beta-hairpin in water, TFE, MeOH, and DMSO and to examine differences in the secondary structure, hydrogen bonds, and weakly polar interactions. CLN025 was synthesized by microwave-assisted solid phase peptide synthesis with N(alpha)-Fmoc protected amino acids. The VCD spectra displayed a (-,+,-) pattern with bands at 1640 to 1656 cm(-1), 1667 to 1687 cm(-1), and 1679 to 1686 cm(-1) formed by the overlap of a lower frequency negative couplet and a higher frequency positive couplet. A maximum IR absorbance was observed at 1647 to 1663 cm(-1) with component bands at 1630 cm(-1), 1646 cm(-1), 1658 cm(-1), and 1675 to 1680 cm(-1) that are indicative of the beta-sheet, random meander, either random meander or loop and turn, respectively. These results are similar to the results of others, who examined the VCD spectra of beta-hairpins formed by (D)Pro-Xxx turns and indicated that observed pattern is typical of beta-hairpins.


Asunto(s)
Dimetilsulfóxido/química , Metanol/química , Oligopéptidos/química , Agua/química , Secuencia de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Solventes/química
6.
Protein Pept Lett ; 16(12): 1504-18, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20001914

RESUMEN

The gastrointestinal peptide hormone gastrin is responsible for initiating the release of gastric acid in the stomach in response to the presence of food and/or humoral factors such as gastrin releasing peptide. However, it has a role in the growth and maintenance of the gastric epithelium, and has been implicated in the formation and growth of gastric cancers. Hypergastrinemia resulting from atrophic gastritis and pernicious anemia leads to hyperplasia and carcinoid formation in rats, and contributes to tumor formation in humans. Additionally, gastrin has been suspected to play a role in the formation and growth of cancers of the colon, but recent studies have instead implicated gastrin processing intermediates, such as gastrin-17-Gly, acting upon a putative, non-cholecystokinin receptor. This review summarizes the production and chemical structures of gastrin and of the processing intermediate gastrin-17-Gly, as well as their activities in the gastrointestinal tract, particularly the promotion of colon cancers.


Asunto(s)
Gastrinas/biosíntesis , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Animales , Colecistoquinina/metabolismo , Ácido Gástrico/metabolismo , Gastritis Atrófica/metabolismo , Gastritis Atrófica/patología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología , Humanos , Ratas , Receptor de Colecistoquinina B/metabolismo , Transducción de Señal/fisiología
7.
Peptides ; 30(12): 2263-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19761808

RESUMEN

Gastrin-17-Gly (G17-Gly) has been shown to bind to non-CCK nanomolar and micromolar affinity sites on DLD-1 and HT-29 human colonic carcinoma cells and to stimulate cellular proliferation. However, in previous studies, we showed that C-terminal truncation of the gastrin-17 (G17) to the G17 analog G17(1-12) and then to G17(1-6)-NH(2) did not remove the ability to bind to DLD-1 cells or to activate proliferation. This implies that residues and/or structural motifs required for bioactivity at these receptors rest in the N-terminal region of G17. In this work, radioligand binding studies conducted with further C-terminally truncated analogs revealed that sequences as short as G17(1-4) still bind to a single receptor with micromolar affinity. Additionally, cell proliferation assays showed that G17(1-12) stimulates proliferation of DLD-1 cells, as of HT-29 cells, but the sequences shorter than G17(1-6)-NH(2), including non-amidated G17(1-6), were incapable of stimulating proliferation. These observations indicate that the tetrapeptide pGlu-Gly-Pro-Trp is the minimum N-terminal sequence for binding to the probable growth-promoting site on DLD-1 cells. Since analogs shorter than G17(1-6) are able to bind the receptor, these peptides may be of use for developing selective antagonists.


Asunto(s)
Gastrinas/química , Péptidos/química , Péptidos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Péptidos/síntesis química , Relación Estructura-Actividad
8.
Peptides ; 30(12): 2250-62, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19766682

RESUMEN

Gastrin-17 (G17) processing intermediates bind to non-CCK receptors which mediate growth of the colonic mucosa but also the formation and development of colonic cancers. In previous studies, we removed the C-terminal region of G17 to form G17(1-12) and considerably shorter C-terminally amidated and non-amidated analogs. Peptides as short as G17(1-4) continued to bind to a single site on DLD-1 human colonic carcinoma cells, while only the G17(1-6)-NH(2) and G17(1-12) peptides retained the ability to activate the receptor and stimulate cell proliferation in vitro. In this report, we studied the structure of these analogs, using a combination of ECD and VCD spectroscopy and replica exchange molecular dynamics (REMD) simulations in water, TFE, and membrane-mimicking environments, in order to determine preferred conformations that may have importance in promoting the biological activities. Mostly random meander structures, punctuated by a beta-turn at residues 1-4, were found in most peptides by REMD simulations. G17(1-3)-NH(2), which cannot form a beta-turn, failed to bind the non-CCK receptor, suggesting the importance of this feature for binding. Additionally, the beta-turn appeared more frequently in longer sequences, possibly explaining the higher affinity of the non-CCK receptor for these peptides seen previously. Finally, C-terminally amidated peptides generally showed greater formation of turn structure than their non-amidated counterparts as shown by ECD spectra, suggesting the importance of peptide length in stabilizing turn structure in N-terminal sequences, and perhaps explaining the ability of G17(1-6)-NH(2) to activate the non-CCK receptor where as the non-amidated G17(1-6) and shorter peptides do not.


Asunto(s)
Gastrinas/química , Simulación de Dinámica Molecular , Péptidos/química , Línea Celular Tumoral , Dicroismo Circular , Humanos , Péptidos/síntesis química
11.
Int J Quantum Chem ; 108(4): 814-819, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18985166

RESUMEN

Avian Pancreatic Polypeptide is a 36 residue protein that exhibits a tertiary fold. Results of previous experimental and computational studies indicate that the structure of aPP is stabilized more by non-bonded interactions than by the hydrophobic effect. Aromatic residues are known to participate in a variety of long range non-bonded interactions, with both backbone atoms and the atoms of other side-chains, which could be responsible, in part, for the stability of both the local secondary structure and the tertiary fold. The effect of these aromatic interactions on the stability of aPP was calculated using BHandHLYP/cc-pVTZ. Aromatic residues were shown to participate in multiple hydrogen bonded and weakly polar interactions in the secondary structure. The energies of the weakly polar interactions are comparable with those of hydrogen bonds. Aromatic residues were also shown to participate in multiple weakly polar interactions across the tertiary fold, again with energies similar to those of hydrogen bonds.

12.
Int J Quantum Chem ; 108(5): 1017-1021, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18985167

RESUMEN

The accuracy of the determination of the energy of interaction between Phe20 and the Pro5-Thr6-Tyr7-Pro8 complex inside the hydrophobic core of avian pancreatic polypeptide was investigated using three capping strategies for molecular fractionation with conjugated caps and DFT quantum chemical calculations at the BHandHLYP/cc-pVTZ level of theory. The most accurate determination resulted from acetylation of the alpha-amino group combined with methyl amidation of the alpha-carbonyl group with relative deviations less than 10%. Combinations of hydrogenation of the alpha-amino group with the replacement of the alpha-carbonyl group with a hydrogen and the hydrogenation of the alpha-amino group with methylation of the alpha-carbonyl group were less accurate, leading to relative deviations up to 35%. Choice of capping methods depends on the structural features of the polypeptide system, the desired accuracy and the available computational resources.

14.
Curr Mol Med ; 8(5): 427-36, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18691070

RESUMEN

Asthma, chronic obstructive pulmonary disorder (COPD), and cystic fibrosis (CF), chronic diseases of the airways, are characterized by symptoms such as inflammation of the lung tissue, mucus hypersecretion, constriction of the airways, and excessive fibrosis of airway tissue. Transforming growth factor (TGF)-beta, a cytokine that affects many different cell processes, has an important role in the lungs of patients with some of these chronic airway diseases, especially with respect to airway remodeling. Eosinophils can be activated by and are a major source of TGF-beta in asthma. The action of TGF-beta also shows associations with other cell types, such as T cells and neutrophils, which are involved in the pathogenesis of asthma. TGF-beta can perpetuate the pathogenesis of COPD and CF, as well, through its induction of inflammation via release from and action on different cells. The intracellular signaling induced by TGF-beta in various cell types has been elucidated and may point to mechanisms of action by TGF-beta on different structural or immune cells in these airway diseases. Some possible treatments, especially that prevent the deleterious airway changes induced by the action of either eosinophils or TGF-beta in asthma, have been investigated. TGF-beta-induced signaling pathways, especially those in different cell types in asthma, COPD, or CF, may provide potential therapeutic targets for the treatment of some of the most devastating airway diseases.


Asunto(s)
Asma/metabolismo , Fibrosis Quística/metabolismo , Eosinófilos/inmunología , Neutrófilos/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Linfocitos T/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Humanos
15.
Biopolymers ; 89(11): 1002-11, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18615659

RESUMEN

The energetics of intramolecular interactions on the conformational potential energy surface of the terminally protected N-Ac-Phe-Gly-Gly-NHMe (FGG), N-Ac-Trp-Gly-Gly-NHMe (WGG), and N-Ac-Tyr-Gly-Gly-NHMe (YGG) tripeptides was investigated. To identify the representative conformations, simulated annealing molecular dynamics (MD) and density functional theory (DFT) methods were used. The interaction energies were calculated at the BHandHLYP/aug-cc-pVTZ level of theory. In the global minima, 10%, 31%, and 10% of the stabilization energy come from weakly polar interactions, respectively, in FGG, WGG, and YGG. In the prominent cases 46%, 62%, and 46% of the stabilization energy is from the weakly polar interactions, respectively, in FGG, WGG, and YGG. On average, weakly polar interactions account for 15%, 34%, and 9% of the stabilization energies of the FGG, WGG, and YGG conformers, respectively. Thus, weakly polar interactions can make an important energetic contribution to protein structure and function.


Asunto(s)
Modelos Moleculares , Oligopéptidos/química , Enlace de Hidrógeno , Estructura Secundaria de Proteína , Relación Estructura-Actividad
16.
J Comput Chem ; 29(12): 1999-2009, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18366017

RESUMEN

On the basis of quantum chemical calculations C(alpha)-glycyl radical parameters have been developed for the OPLS-AA/L force field. The molecular mechanics hypersurface was fitted to the calculated quantum chemical surface by minimizing their molecular mechanics parameter dependent sum-of-squares deviations. To do this, a computer program in which the molecular mechanics energy derivatives with respect to the parameters were calculated analytically was developed, implementing the general method of Lifson and Warshel (J Chem Phys 1968, 49, 5116) for force field parameter optimization. This program, in principle, can determine the optimal parameter set in one calculation if enough representative value points on the quantum chemical potential energy surface are available and there is no linear dependency between the parameters. Some of the parameters in quantum calculations, including several new torsion types around a bond as well as angle parameters at a new central atom type, are not completely separable. Consequently, some restrictions and/or presumptions were necessary during parameter optimization. The relative OPLS-AA energies reproduced those calculated quantum chemically almost perfectly.


Asunto(s)
Radicales Libres/química , Glicina/química , Modelos Teóricos , Teoría Cuántica
17.
J Phys Chem B ; 112(11): 3503-8, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18303883

RESUMEN

The tertiary structure of the TC5b miniprotein is stabilized by inter-residue interactions of the Trp-cage, which is composed of a Tyr and several Pro residues surrounding a central Trp residue. The interactions include Ar-Ar (aromatic side-chain-aromatic side-chain), Ar-NH (aromatic side-chain-backbone amide), and CH-pi (aromatic side-chain-aliphatic hydrogen) interactions. In the present work, the strength of the weakly polar interactions found in the TC5b miniprotein was quantified using all of the available 38 NMR structures (1L2Y) from the Protein Data Bank with DFT quantum chemical calculations at the BHandHLYP/cc-pVTZ level of theory and molecular fragmentation with capping of the partial structures. The energies of interaction between the individual residues of the Trp-cage range between -5.85+/-1.41 and -21.30+/-0.88 kcal mol(-1), leading to a significant total structural stabilization energy of -52.13+/-2.56 kcal mol(-1) of which about 50% is from the weakly polar interactions. Furthermore, the strengths of the individual weakly polar interactions are between -2.32+/-0.17 and -2.93+/-0.12 kcal mol(-1) for the CH-pi interactions, between -2.48+/-0.97 and -3.09+/-1.02 kcal mol(-1) for the Ar-NH interaction and -2.74+/-1.06 kcal mol(-1) for the Ar-Ar interaction.


Asunto(s)
Algoritmos , Péptidos/química , Teoría Cuántica , Proteínas Recombinantes/química , Amidas/química , Hidrocarburos Acíclicos/química , Hidrocarburos Aromáticos/química , Hidrógeno/química , Espectroscopía de Resonancia Magnética , Modelos Químicos , Termodinámica , Triptófano/química
18.
J Comput Chem ; 29(9): 1466-71, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18270961

RESUMEN

The pineal gland hormone melatonin regulates several physiological processes including circadian rhythm and also alleviates oxidative stress-induced degenerative diseases. In spite of its important biological roles, no high level ab initio conformational study has been conducted to reveal its structural features. In this work, the conformational flexibility of melatonin was investigated using correlated ab initio calculations. Conformers, obtained previously at the Hartree-Fock level (HF/6-31G*), were fully optimized using second order Møller-Plesset perturbation theory applying the frozen core approximation (MP2(FC)/6-31G*). Furthermore, single-point MP4(SDQ,FC)/6-31G*//MP2(FC)/6-31G* computations were performed to investigate the effect of higher order perturbation terms. The HF and MP2 conformational spaces are considerably different: the initial 128 structures converged into 102 different local minima as confirmed by frequency calculations; 28 new minima appeared and 26 previous HF local minima disappeared; no "all-trans" C3 side chain conformations are seen at the MP2(FC) level. The MP2 global minimum conformation is stabilized by an aromatic-side chain interaction.


Asunto(s)
Simulación por Computador , Melatonina/química , Modelos Biológicos , Teoría Cuántica , Electrones , Conformación Molecular
19.
J Comput Chem ; 29(8): 1344-52, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18172837

RESUMEN

The interaction energies of ubiquitous weakly polar interactions in proteins are comparable with those of hydrogen bonds, consequently, they stabilize local, secondary, and tertiary structures. However, the most widely-used density functionals fail to describe the weakly polar interactions. Thus, it is important to find and test functionals which adequately describe and quantify the energetics of such interactions. For this purpose, interaction energies in the hydrophobic core of rubredoxin (PDB id: 1rb9) and in the S22 subset of the JSCH-2005 benchmark database were computed with the BHandHLYP and PWPW91 functionals and with the pseudospectral implementation of the local MP2 (PS-LMP2) method. The cc-pVDZ, cc-pVTZ(-f), cc-pVTZ, cc-pVQZ(-g), aug-cc-pVDZ, aug-cc-VTZ(-f), and aug-cc-pVTZ basis sets were used for the calculations. In the S22 subset the PS-LMP2 results were extrapolated to the complete basis set limit. Furthermore, the a posteriori counterpoise method of Boys and Bernardi was used to correct the basis set superposition errors in the calculation of interaction energies. Calculations using the BHandHLYP functional, both for the various weakly polar interactions in rubredoxin and for the dispersion interactions in the S22 subset, were in good agreement with those using the coupled cluster (CCSD(T)) and the resolution of identity MP2 (RIMP2) methods and clearly outperformed both the PWPW91 functional and the PS-LMP2 method. The results for the S22 hydrogen bonded subset, obtained with PWPW91 calculations, were closest to those of the reference high level calculations. For the "mixed" (hydrogen bonded and dispersive) interactions in the S22 subset, results obtained with the BHandHLYP and PS-LMP2 calculations agreed well with the reference calculations.


Asunto(s)
Péptidos/química , Técnicas Químicas Combinatorias , Conformación Proteica
20.
Mol Cancer ; 6: 82, 2007 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-18157915

RESUMEN

BACKGROUND: Retinoids are potent growth inhibitory and differentiating agents in a variety of cancer cell types. We have shown that retinoids induce growth arrest in all pancreatic cancer cell lines studied, regardless of their p53 and differentiation status. However, the mechanism of growth inhibition is not known. Since TGF-beta2 is markedly induced by retinoids in other cancers and mediates MUC4 expression in pancreatic cancer cells, we investigated the role of TGF-beta in retinoic acid-mediated growth inhibition in pancreatic cancer cells. RESULTS: Retinoic acid markedly inhibited proliferation of two cell lines (Capan-2 and Hs766T) in a concentration and time-dependent manner. Retinoic acid increased TGF-beta2 mRNA content and secretion of the active and latent forms of TGF-beta2 (measured by ELISA and bioassay). The concentrations of active and TGF-beta2 secreted in response to 0.1 - 10 muM retinoic acid were between 1-5 pM. TGF-beta2 concentrations within this range also inhibited proliferation. A TGF-beta neutralizing antibody blocked the growth inhibitory effects of retinoic acid in Capan-2 cells and partially inhibitory the effects in Hs766T cells. CONCLUSION: These findings indicate that TGF-beta can cause growth inhibition of pancreatic cancer cells, in a p53-independent manner. Furthermore, it demonstrates the fundamental role of TGF-beta in growth inhibition in response to retinoic acid treatment is preserved in vitro.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Factor de Crecimiento Transformador beta2/fisiología , Tretinoina/farmacología , Anticuerpos/inmunología , Anticuerpos/farmacología , Especificidad de Anticuerpos , Procesos de Crecimiento Celular/efectos de los fármacos , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Humanos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Factor de Crecimiento Transformador beta2/biosíntesis , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/inmunología , Factor de Crecimiento Transformador beta2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...