Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Imaging ; 2022: 5185951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967756

RESUMEN

Purpose: Quantitative in vivo [18F]-(2S,4R)4-fluoroglutamine ([18F]4-FGln or more simply [18F]FGln) metabolic kinetic parameters are compared with activity levels of glutamine metabolism in different types of hepatocellular carcinoma (HCC). Methods: For this study, we used two transgenic mouse models of HCC induced by protooncogenes, MYC, and MET. Biochemical data have shown that tumors induced by MYC have increased levels of glutamine metabolism compared to those induced by MET. One-hour dynamic [18F]FGln PET data were acquired and reconstructed for fasted MYC mice (n = 11 tumors from 7 animals), fasted MET mice (n = 8 tumors from 6 animals), fasted FVBN controls (n = 8 normal liver regions from 6 animals), nonfasted MYC mice (n = 16 tumors from 6 animals), and nonfasted FVBN controls (n = 8 normal liver regions from 3 animals). The influx rate constants (K 1) using the one-tissue compartment model were derived for each tumor with the left ventricular blood pool input function. Results: Influx rate constants were significantly higher for MYC tumors (K 1 = 0.374 ± 0.133) than for MET tumors (K 1 = 0.141 ± 0.058) under fasting conditions (P = 0.0002). Rate constants were also significantly lower for MET tumors (K 1 = 0.141 ± 0.135) than normal livers (K 1 = 0.332 ± 0.179) under fasting conditions (P = 0.0123). Fasting conditions tested for MYC tumors and normal livers did not result in any significant difference with P values > 0.005. Conclusion: Higher influx rate constants corresponded to elevated levels of glutamine metabolism as determined by biochemical assays. The data showed that there is a distinctive difference in glutamine metabolism between MYC and MET tumors. Our study has demonstrated the potential of [18F]FGln PET imaging as a tool to assess glutamine metabolism in HCC tumors in vivo with a caution that it may not be able to clearly distinguish HCC tumors from normal liver tissue.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/diagnóstico por imagen , Modelos Animales de Enfermedad , Glutamina/análogos & derivados , Glutamina/metabolismo , Neoplasias Hepáticas/diagnóstico por imagen , Ratones , Ratones Transgénicos , Tomografía de Emisión de Positrones/métodos
2.
Mol Imaging ; 16: 1536012117724558, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28877656

RESUMEN

Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid (18F-FTHA) and glucose analog 18F-fluorodeoxyglucose (18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol (18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimate the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant ( P = .1) and distribution volume ( P = .1), significantly higher 18F-FDG myocardial influx rate constant ( P = 4×10-8), and significantly lower 18F-FTHA myocardial influx rate constant ( P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant ( P = 5×10-6) and distribution volume ( P = 3×10-8), significantly higher 18F-FDG myocardial influx rate constant ( P = 3×10-8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011-2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Hipertensión/diagnóstico por imagen , Miocardio/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Endogámicas SHR
3.
Brain ; 139(Pt 7): 1994-2001, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27234268

RESUMEN

SEE DREIER DOI 101093/AWW112 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: For many decades a breakdown of the blood-brain barrier has been postulated to occur in migraine. Hypothetically this would facilitate access of medications, such as dihydroergotamine or triptans, to the brain despite physical properties otherwise restricting their entry. We studied the permeability of the blood-brain barrier in six migraineurs and six control subjects at rest and during acute glyceryl trinitrate-induced migraine attacks using positron emission tomography with the novel radioligand (11)C-dihydroergotamine, which is chemically identical to pharmacologically active dihydroergotamine. The influx rate constant Ki, average dynamic image and time activity curve were assessed using arterial blood sampling and served as measures for receptor binding and thus blood-brain barrier penetration. At rest, there was binding of (11)C-dihydroergotamine in the choroid plexus, pituitary gland, and venous sinuses as expected from the pharmacology of dihydroergotamine. However, there was no binding to the brain parenchyma, including the hippocampus, the area with the highest density of the highest-affinity dihydroergotamine receptors, and the raphe nuclei, a postulated brainstem site of action during migraine, suggesting that dihydroergotamine is not able to cross the blood-brain barrier. This binding pattern was identical in migraineurs during glyceryl trinitrate-induced migraine attacks as well as in matched control subjects. We conclude that (11)C-dihydroergotamine is unable to cross the blood-brain barrier interictally or ictally demonstrating that the blood-brain barrier remains tight for dihydroergotamine during acute glyceryl trinitrate-induced migraine attacks.


Asunto(s)
Barrera Hematoencefálica , Dihidroergotamina/metabolismo , Trastornos Migrañosos , Nitroglicerina/farmacología , Tomografía de Emisión de Positrones/métodos , Vasoconstrictores/metabolismo , Vasodilatadores/farmacología , Adulto , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Migrañosos/diagnóstico por imagen , Trastornos Migrañosos/metabolismo
4.
Cancer Res ; 75(7): 1225-35, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25672980

RESUMEN

The increased proteolytic activity of membrane-bound and secreted proteases on the surface of cancer cells and in the transformed stroma is a common characteristic of aggressive metastatic prostate cancer. We describe here the development of an active site-specific probe for detecting a secreted peritumoral protease expressed by cancer cells and the surrounding tumor microenvironment. Using a human fragment antigen-binding phage display library, we identified a human antibody termed U33 that selectively inhibited the active form of the protease urokinase plasminogen activator (uPA, PLAU). In the full-length immunoglobulin form, U33 IgG labeled with near-infrared fluorophores or radionuclides allowed us to noninvasively detect active uPA in prostate cancer xenograft models using optical and single-photon emission computed tomography imaging modalities. U33 IgG labeled with (111)In had a remarkable tumor uptake of 43.2% injected dose per gram (%ID/g) 72 hours after tail vein injection of the radiolabeled probe in subcutaneous xenografts. In addition, U33 was able to image active uPA in small soft-tissue and osseous metastatic lesions using a cardiac dissemination prostate cancer model that recapitulated metastatic human cancer. The favorable imaging properties were the direct result of U33 IgG internalization through an uPA receptor-mediated mechanism in which U33 mimicked the function of the endogenous inhibitor of uPA to gain entry into the cancer cell. Overall, our imaging probe targets a prostate cancer-associated protease, through a unique mechanism, allowing for the noninvasive preclinical imaging of prostate cancer lesions.


Asunto(s)
Neoplasias de la Próstata/enzimología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Radioisótopos de Indio , Masculino , Ratones Desnudos , Trasplante de Neoplasias , Especificidad de Órganos , Neoplasias de la Próstata/diagnóstico por imagen , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Óptica , Activador de Plasminógeno de Tipo Uroquinasa/genética
5.
Theranostics ; 4(3): 267-79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505235

RESUMEN

Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and (111)In-single photon emission computed tomography (SPECT). Tumor uptake of the (111)In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications.


Asunto(s)
Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Animales , Anticuerpos/análisis , Antineoplásicos/farmacología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Femenino , Humanos , Inmunoglobulina G/análisis , Radioisótopos de Indio , Células MCF-7 , Ratones , Imagen Multimodal , Imagen Óptica , Paclitaxel/farmacología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/inmunología , Tamoxifeno/farmacología , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
6.
J Nucl Med ; 54(11): 1938-45, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24092939

RESUMEN

UNLABELLED: Myocardial metabolic and perfusion imaging is a vital tool for understanding the physiologic consequences of heart failure. We used PET imaging to examine the longitudinal kinetics of (18)F-FDG and 14(R,S)-(18)F-fluoro-6-thia-heptadecanoic acid ((18)F-FTHA) as analogs of glucose and fatty acid (FA) to quantify metabolic substrate shifts with the spontaneously hypertensive rat (SHR) as a model of left ventricular hypertrophy (LVH) and failure. Myocardial perfusion and left ventricular function were also investigated using a newly developed radiotracer (18)F-fluorodihydrorotenol ((18)F-FDHROL). METHODS: Longitudinal dynamic electrocardiogram-gated small-animal PET/CT studies were performed with 8 SHR and 8 normotensive Wistar-Kyoto (WKY) rats over their life cycle. We determined the myocardial influx rate constant for (18)F-FDG and (18)F-FTHA (Ki(FDG) and Ki(FTHA), respectively) and the wash-in rate constant for (18)F-FDHROL (K1(FDHROL)). (18)F-FDHROL data were also used to quantify left ventricular ejection fraction (LVEF) and end-diastolic volume (EDV). Blood samples were drawn to independently measure plasma concentrations of glucose, insulin, and free fatty acids (FFAs). RESULTS: Ki(FDG) and Ki(FTHA) were higher in SHRs than WKY rats (P < 3 × 10(-8) and 0.005, respectively) independent of age. A decrease in Ki(FDG) with age was evident when models were combined (P = 0.034). The SHR exhibited higher K1(FDHROL) (P < 5 × 10(-6)) than the control, with no age-dependent trends in either model (P = 0.058). Glucose plasma concentrations were lower in SHRs than controls (P < 6 × 10(-12)), with an age-dependent rise for WKY rats (P < 2 × 10(-5)). Insulin plasma concentrations were higher in SHRs than controls (P < 3 × 10(-3)), with an age-dependent decrease when models were combined (P = 0.046). FFA levels were similar between models (P = 0.374), but an increase with age was evident only in SHR (P < 7 × 10(-6)). CONCLUSION: The SHR exhibited alterations in myocardial substrate use at 8 mo characterized by increased glucose and FA utilizations. At 20 mo, the SHR had LVH characterized by decreased LVEF and increased EDV, while simultaneously sustaining higher glucose and similar FA utilizations (compared with WKY rats), which indicates maladaptation of energy substrates in the failing heart. Elevated K1(FDHROL) in the SHR may reflect elevated oxygen consumption and decreased capillary density in the hypertrophied heart. From our findings, metabolic changes appear to precede mechanical changes of LVH progression in the SHR model.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Imagen Multimodal , Imagen de Perfusión Miocárdica , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Animales , Modelos Animales de Enfermedad , Ácidos Grasos , Ácidos Grasos no Esterificados/sangre , Fluorodesoxiglucosa F18 , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Insulina/sangre , Estudios Longitudinales , Masculino , Fenotipo , Ratas , Ratas Endogámicas SHR
7.
Cancer Res ; 73(7): 2070-81, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23400595

RESUMEN

Components of the plasminogen activation system, which are overexpressed in aggressive breast cancer subtypes, offer appealing targets for development of new diagnostics and therapeutics. By comparing gene expression data in patient populations and cultured cell lines, we identified elevated levels of the urokinase plasminogen activation receptor (uPAR, PLAUR) in highly aggressive breast cancer subtypes and cell lines. Recombinant human anti-uPAR antagonistic antibodies exhibited potent binding in vitro to the surface of cancer cells expressing uPAR. In vivo these antibodies detected uPAR expression in triple negative breast cancer (TNBC) tumor xenografts using near infrared imaging and (111)In single-photon emission computed tomography. Antibody-based uPAR imaging probes accurately detected small disseminated lesions in a tumor metastasis model, complementing the current clinical imaging standard (18)F-fluorodeoxyglucose at detecting non-glucose-avid metastatic lesions. A monotherapy study using the antagonistic antibodies resulted in a significant decrease in tumor growth in a TNBC xenograft model. In addition, a radioimmunotherapy study, using the anti-uPAR antibodies conjugated to the therapeutic radioisotope (177)Lu, found that they were effective at reducing tumor burden in vivo. Taken together, our results offer a preclinical proof of concept for uPAR targeting as a strategy for breast cancer diagnosis and therapy using this novel human antibody technology.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias de la Mama/prevención & control , Receptores del Activador de Plasminógeno Tipo Uroquinasa/antagonistas & inhibidores , Proteínas Recombinantes/uso terapéutico , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Procesamiento de Imagen Asistido por Computador , Técnicas para Inmunoenzimas , Radioisótopos de Indio , Estudios Longitudinales , Ratones , Ratones Desnudos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Resonancia por Plasmón de Superficie , Células Tumorales Cultivadas , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Proc Natl Acad Sci U S A ; 110(1): 93-8, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248318

RESUMEN

Proteases responsible for the increased peritumoral proteolysis associated with cancer represent functional biomarkers for monitoring tumorigenesis. One attractive extracellular biomarker is the transmembrane serine protease matriptase. Found on the surface of epithelial cells, the activity of matriptase is regulated by its cognate inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). Quantitative mass spectrometry allowed us to show that, in selected cancers, HAI-1 expression decreases, leading to active matriptase. A preclinical probe specific for the measurement of emergent active matriptase was developed. Using an active-site-specific, recombinant human antibody for matriptase, we found that the selective targeting of active matriptase can be used to visualize the tumorigenic epithelium. Live-cell fluorescence imaging validated the selectivity of the antibody in vitro by showing that the probe localized only to cancer cell lines with active matriptase on the surface. Immunofluorescence with the antibody documented significant levels of active matriptase in 68% of primary and metastatic colon cancer sections from tissue microarrays. Labeling of the active form of matriptase in vivo was measured in human colon cancer xenografts and in a patient-derived xenograft model using near-infrared and single-photon emission computed tomography imaging. Tumor uptake of the radiolabeled antibody, (111)In-A11, by active matriptase was high in xenografts (28% injected dose per gram) and was blocked in vivo by the addition of a matriptase-specific variant of ecotin. These findings suggest, through a HAI-1-dependent mechanism, that emergent active matriptase is a functional biomarker of the transformed epithelium and that its proteolytic activity can be exploited to noninvasively evaluate tumorigenesis in vivo.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/metabolismo , Neoplasias del Colon/metabolismo , Células Epiteliales/metabolismo , Imagen Óptica/métodos , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Serina Endopeptidasas/metabolismo , Anticuerpos/inmunología , Humanos , Radioisótopos de Indio/metabolismo , Espectrometría de Masas , Serina Endopeptidasas/inmunología
9.
Mol Pharm ; 10(1): 69-76, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23214968

RESUMEN

The fields of nanotechnology and medicine have merged in the development of new imaging and drug delivery agents based on nanoparticle platforms. As one example, a mutant of bacteriophage MS2 can be differentially modified on the exterior and interior surfaces for the concurrent display of targeting functionalities and payloads, respectively. In order to realize their potential for use in in vivo applications, the biodistribution and circulation properties of this class of agents must first be investigated. A means of modulating and potentially improving the characteristics of nanoparticle agents is the appendage of PEG chains. Both MS2 and MS2-PEG capsids possessing interior DOTA chelators were labeled with (64)Cu and injected intravenously into mice possessing tumor xenografts. Dynamic imaging of the agents was performed using PET-CT on a single animal per sample, and the biodistribution at the terminal time point (24 h) was assessed by gamma counting of the organs ex vivo for 3 animals per agent. Compared to other viral capsids of similar size, the MS2 agents showed longer circulation times. Both MS2 and MS2-PEG bacteriophage behaved similarly, although the latter agent showed significantly less uptake in the spleen. This effect may be attributed to the ability of the PEG chains to mask the capsid charge. Although the tumor uptake of the agents may result from the enhanced permeation and retention (EPR) effect, selective tumor imaging may be achieved in the future by using exterior targeting groups.


Asunto(s)
Levivirus/química , Levivirus/metabolismo , Tomografía de Emisión de Positrones/métodos , Animales , Cápside/metabolismo , Línea Celular Tumoral , Radioisótopos de Cobre/administración & dosificación , Radioisótopos de Cobre/química , Femenino , Células MCF-7 , Ratones , Ratones Desnudos , Polietilenglicoles/química , Distribución Tisular
10.
Mol Imaging Biol ; 14(6): 735-42, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22382618

RESUMEN

PURPOSE: [(124)I]m-iodobenzylguanidine ((124)I-mIBG) provides a quantitative tool for pretherapy tumor imaging and dosimetry when performed before [(131)I]m-iodobenzylguanidine ((131)I-mIBG) targeted radionuclide therapy of neuroblastoma. (124)I (T (1/2) = 4.2 days) has a comparable half-life to that of (131)I (T (1/2) = 8.02 days) and can be imaged by positron emission tomography (PET) for accurate quantification of the radiotracer distribution. We estimated expected radiation dose in tumors from (131)I-mIBG therapy using (124)I-mIBG microPET/CT imaging data in a murine xenograft model of neuroblastoma transduced to express high levels of the human norepinephrine transporter (hNET). PROCEDURES: In order to enhance mIBG uptake for in vivo imaging and therapy, NB 1691-luciferase (NB1691) human neuroblastoma cells were engineered to express high levels of hNET protein by lentiviral transduction (NB1691-hNET). Both NB1691 and NB1691-hNET cells were implanted subcutaneously and into renal capsules in athymic mice. (124)I-mIBG (4.2-6.5 MBq) was administered intravenously for microPET/CT imaging at 5 time points over 95 h (0.5, 3-5, 24, 48, and 93-95 h median time points). In vivo biodistribution data in normal organs, tumors, and whole-body were collected from reconstructed PET images corrected for photon attenuation using the CT-based attenuation map. Organ and tumor dosimetry were determined for (124)I-mIBG. Dose estimates for (131)I-mIBG were made, assuming the same in vivo biodistribution as (124)I-mIBG. RESULTS: All NB1691-hNET tumors had significant uptake and retention of (124)I-mIBG, whereas unmodified NB1691 tumors did not demonstrate quantifiable mIBG uptake in vivo, despite in vitro uptake. (124)I-mIBG with microPET/CT provided an accurate three-dimensional tool for estimating the radiation dose that would be delivered with (131)I-mIBG therapy. For example, in our model system, we estimated that the administration of (131)I-mIBG in the range of 52.8-206 MBq would deliver 20 Gy to tumors. CONCLUSIONS: The overexpression of hNET was found to be critical for (124)I-mIBG uptake and retention in vivo. The quantitative (124)I-mIBG PET/CT is a promising new tool to predict tumor radiation doses with (131)I-mIBG therapy of neuroblastoma. This methodology may be applied to tumor dosimetry of (131)I-mIBG therapy in human subjects using (124)I-mIBG pretherapy PET/CT data.


Asunto(s)
3-Yodobencilguanidina/uso terapéutico , Neuroblastoma/diagnóstico por imagen , Tomografía de Emisión de Positrones , Dosis de Radiación , Microtomografía por Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto , 3-Yodobencilguanidina/farmacocinética , Animales , Modelos Animales de Enfermedad , Humanos , Imagenología Tridimensional , Radioisótopos de Yodo , Ratones , Ratones Desnudos , Neuroblastoma/tratamiento farmacológico , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Especificidad de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA