Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 342: 114339, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37369328

RESUMEN

Environmental changes can be stressors (altered habitat and food supply, climate change, etc.) to wild animals. Stressors trigger the hypothalamic pituitary adrenal (HPA) axis to release corticosterone (CORT) which modifies energy homeostasis. During nesting, stressed females can deposit increased concentrations of CORT into eggs, altering egg viability and offspring characteristics, constituting a significant mechanism regulating population productivity in subsequent generations. In this study, increased maternal disposition of CORT was mimicked through a 15 ng/g in ovo injection of CORT into mallard duck eggs. Growth and HPA axis function were measured during post-hatch development. For growth, changes in mass were compared at hatch, 7 weeks and 11 weeks. The HPA axis was assessed at seven weeks by measuring CORT at baseline, followed by restraint stress, dexamethasone (negative feedback) and ACTH (maximal adrenal capacity) challenges. At eleven weeks of age, ducks were subjected to a 6-day 25% feed reduction to simulate a poor quality environment to evaluate response to a chronic stressor by comparing CORT at baseline and after restraint stress. Growth and CORT concentration did not differ between treatments at seven weeks or after feed restriction (11 weeks). The CORT dosage administered did not appear to affect HPA axis development in ducklings. Mallards are a highly adaptable species and may have overcome any early alterations to their phenotype. Further research is needed to determine the effects of increased maternal CORT on growth and the development of the HPA axis in ducks. SUMMARY STATEMENT: This study examines how maternal stress (simulated through elevated corticosterone in ovo) and post-hatch chronic stressors (food restriction) affect the development of the HPA axis in a precocial bird.


Asunto(s)
Corticosterona , Sistema Hipotálamo-Hipofisario , Animales , Femenino , Corticosterona/farmacología , Patos , Sistema Hipófiso-Suprarrenal , Retroalimentación , Estrés Fisiológico
2.
Front Physiol ; 14: 1229152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38269059

RESUMEN

Metabolomics is the study of small, endogenous metabolites that participate in metabolic reactions, including responses to stressors. Anthropogenic and environmental changes that alter habitat and food supply can act as stressors in wild waterfowl. These alterations invoke a series of physiological processes to provide energy to restore homeostasis and increase survival. In this study, we utilized fecal metabolomics to measure metabolites and identify pathways related to a 6-day feed restriction in captive mallard ducks (Anas platyrhynchos, n = 9). Fecal samples were collected before (baseline) and during feed restriction (treatment). H1 Nuclear Magnetic Resonance (NMR) spectroscopy was performed to identify metabolites. We found that fecal metabolite profiles could be used to distinguish between the feed-restricted and baseline samples. We identified metabolites related to pathways for energy production and metabolism endpoints, and metabolites indicative of gut microbiota changes. We also demonstrated that mallard ducks could utilize endogenous reserves in times of limited caloric intake. Fecal metabolomics shows promise as a non-invasive novel tool in identifying and characterizing physiological responses associated with stressors in a captive wild bird species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA