Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol Resour ; 18(6): 1282-1298, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29877042

RESUMEN

The use of environmental DNA (eDNA) has become an applicable noninvasive tool with which to obtain information about biodiversity. A subdiscipline of eDNA is iDNA (invertebrate-derived DNA), where genetic material ingested by invertebrates is used to characterize the biodiversity of the species that served as hosts. While promising, these techniques are still in their infancy, as they have only been explored on limited numbers of samples from only a single or a few different locations. In this study, we investigate the suitability of iDNA extracted from more than 3,000 haematophagous terrestrial leeches as a tool for detecting a wide range of terrestrial vertebrates across five different geographical regions on three different continents. These regions cover almost the full geographical range of haematophagous terrestrial leeches, thus representing all parts of the world where this method might apply. We identify host taxa through metabarcoding coupled with high-throughput sequencing on Illumina and IonTorrent sequencing platforms to decrease economic costs and workload and thereby make the approach attractive for practitioners in conservation management. We identified hosts in four different taxonomic vertebrate classes: mammals, birds, reptiles and amphibians, belonging to at least 42 different taxonomic families. We find that vertebrate blood ingested by haematophagous terrestrial leeches throughout their distribution is a viable source of DNA with which to examine a wide range of vertebrates. Thus, this study provides encouraging support for the potential of haematophagous terrestrial leeches as a tool for detecting and monitoring terrestrial vertebrate biodiversity.


Asunto(s)
Análisis Químico de la Sangre/métodos , Código de Barras del ADN Taxonómico/métodos , Monitoreo del Ambiente/métodos , Sanguijuelas/crecimiento & desarrollo , Metagenómica/métodos , Anfibios/parasitología , Animales , Aves/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mamíferos/parasitología , Reptiles/parasitología
2.
Ecol Evol ; 7(14): 5435-5453, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28770080

RESUMEN

The analysis of apex predator diet has the ability to deliver valuable insights into ecosystem health, and the potential impacts a predator might have on commercially relevant species. The Australian sea lion (Neophoca cinerea) is an endemic apex predator and one of the world's most endangered pinnipeds. Given that prey availability is vital to the survival of top predators, this study set out to understand what dietary information DNA metabarcoding could yield from 36 sea lion scats collected across 1,500 km of its distribution in southwest Western Australia. A combination of PCR assays were designed to target a variety of potential sea lion prey, including mammals, fish, crustaceans, cephalopods, and birds. Over 1.2 million metabarcodes identified six classes from three phyla, together representing over 80 taxa. The results confirm that the Australian sea lion is a wide-ranging opportunistic predator that consumes an array of mainly demersal fauna. Further, the important commercial species Sepioteuthis australis (southern calamari squid) and Panulirus cygnus (western rock lobster) were detected, but were present in <25% of samples. Some of the taxa identified, such as fish, sharks and rays, clarify previous knowledge of sea lion prey, and some, such as eel taxa and two gastropod species, represent new dietary insights. Even with modest sample sizes, a spatial analysis of taxa and operational taxonomic units found within the scat shows significant differences in diet between many of the sample locations and identifies the primary taxa that are driving this variance. This study provides new insights into the diet of this endangered predator and confirms the efficacy of DNA metabarcoding of scat as a noninvasive tool to more broadly define regional biodiversity.

3.
Mol Ecol ; 25(19): 4919-29, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27480679

RESUMEN

Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus. However, when differences in inoculum potential or soil abiotic properties among soil ages were removed while host identity was held constant, differences in ECM fungal communities and richness among chronosequence stages disappeared. Our results show that ECM fungal communities strongly vary during long-term ecosystem development, even within the same hosts. However, these changes could not be attributed to short-term fungal edaphic specialization or differences in fungal inoculum (i.e. density and composition) alone. Rather, they must reflect longer-term ecosystem-level feedback between soil, vegetation and ECM fungi during pedogenesis.


Asunto(s)
Micorrizas/clasificación , Microbiología del Suelo , Suelo/química , Australia , Ecosistema , Fósforo/química
4.
Sci Rep ; 5: 17475, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26658160

RESUMEN

Globally, there has been an increase in the use of herbal remedies including traditional Chinese medicine (TCM). There is a perception that products are natural, safe and effectively regulated, however, regulatory agencies are hampered by a lack of a toolkit to audit ingredient lists, adulterants and constituent active compounds. Here, for the first time, a multidisciplinary approach to assessing the molecular content of 26 TCMs is described. Next generation DNA sequencing is combined with toxicological and heavy metal screening by separation techniques and mass spectrometry (MS) to provide a comprehensive audit. Genetic analysis revealed that 50% of samples contained DNA of undeclared plant or animal taxa, including an endangered species of Panthera (snow leopard). In 50% of the TCMs, an undeclared pharmaceutical agent was detected including warfarin, dexamethasone, diclofenac, cyproheptadine and paracetamol. Mass spectrometry revealed heavy metals including arsenic, lead and cadmium, one with a level of arsenic >10 times the acceptable limit. The study showed 92% of the TCMs examined were found to have some form of contamination and/or substitution. This study demonstrates that a combination of molecular methodologies can provide an effective means by which to audit complementary and alternative medicines.


Asunto(s)
Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China/normas , Metales Pesados/análisis , Farmacovigilancia , Pruebas de Toxicidad , Contaminación de Medicamentos , Medicamentos Herbarios Chinos/toxicidad , Humanos , Medicina Tradicional China/efectos adversos , Metales Pesados/toxicidad , Pruebas de Toxicidad/métodos
5.
Parasit Vectors ; 8: 345, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26108374

RESUMEN

BACKGROUND: The Australian paralysis tick (Ixodes holocyclus) is of significant medical and veterinary importance as a cause of dermatological and neurological disease, yet there is currently limited information about the bacterial communities harboured by these ticks and the risk of infectious disease transmission to humans and domestic animals. Ongoing controversy about the presence of Borrelia burgdorferi sensu lato (the aetiological agent of Lyme disease) in Australia increases the need to accurately identify and characterise bacteria harboured by I. holocyclus ticks. METHODS: Universal PCR primers were used to amplify the V1-2 hyper-variable region of bacterial 16S rRNA genes present in DNA samples from I. holocyclus and I. ricinus ticks, collected in Australia and Germany respectively. The 16S amplicons were purified, sequenced on the Ion Torrent platform, and analysed in USEARCH, QIIME, and BLAST to assign genus and species-level taxonomy. Initial analysis of I. holocyclus and I. ricinus identified that > 95 % of the 16S sequences recovered belonged to the tick intracellular endosymbiont "Candidatus Midichloria mitochondrii" (CMM). A CMM-specific blocking primer was designed that decreased CMM sequences by approximately 96 % in both tick species and significantly increased the total detectable bacterial diversity, allowing identification of medically important bacterial pathogens that were previously masked by CMM. RESULTS: Borrelia burgdorferi sensu lato was identified in German I. ricinus, but not in Australian I. holocyclus ticks. However, bacteria of medical significance were detected in I. holocyclus ticks, including a Borrelia relapsing fever group sp., Bartonella henselae, novel "Candidatus Neoehrlichia" spp., Clostridium histolyticum, Rickettsia spp., and Leptospira inadai. CONCLUSIONS: Abundant bacterial endosymbionts, such as CMM, limit the effectiveness of next-generation 16S bacterial community profiling in arthropods by masking less abundant bacteria, including pathogens. Specific blocking primers that inhibit endosymbiont 16S amplification during PCR are an effective way of reducing this limitation. Here, this strategy provided the first evidence of a relapsing fever Borrelia sp. and of novel "Candidatus Neoehrlichia" spp. in Australia. Our results raise new questions about tick-borne pathogens in I. holocyclus ticks.


Asunto(s)
Alphaproteobacteria/aislamiento & purificación , Vectores Arácnidos/microbiología , Ixodes/microbiología , ARN Ribosómico 16S/genética , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/fisiología , Animales , Vectores Arácnidos/clasificación , Australia , Borrelia/clasificación , Borrelia/genética , Borrelia/aislamiento & purificación , ADN Bacteriano/genética , Femenino , Ixodes/clasificación , Masculino , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Simbiosis
6.
PLoS One ; 10(4): e0124671, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25902146

RESUMEN

Amplicon sequencing has been the method of choice in many high-throughput DNA sequencing (HTS) applications. To date there has been a heavy focus on the means by which to analyse the burgeoning amount of data afforded by HTS. In contrast, there has been a distinct lack of attention paid to considerations surrounding the importance of sample preparation and the fidelity of library generation. No amount of high-end bioinformatics can compensate for poorly prepared samples and it is therefore imperative that careful attention is given to sample preparation and library generation within workflows, especially those involving multiple PCR steps. This paper redresses this imbalance by focusing on aspects pertaining to the benchtop within typical amplicon workflows: sample screening, the target region, and library generation. Empirical data is provided to illustrate the scope of the problem. Lastly, the impact of various data analysis parameters is also investigated in the context of how the data was initially generated. It is hoped this paper may serve to highlight the importance of pre-analysis workflows in achieving meaningful, future-proof data that can be analysed appropriately. As amplicon sequencing gains traction in a variety of diagnostic applications from forensics to environmental DNA (eDNA) it is paramount workflows and analytics are both fit for purpose.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Flujo de Trabajo , Animales , Peces/genética , Reacción en Cadena de la Polimerasa
7.
Investig Genet ; 5(1): 16, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25516795

RESUMEN

BACKGROUND: Mammalian hairs are one of the most ubiquitous types of trace evidence collected in the course of forensic investigations. However, hairs that are naturally shed or that lack roots are problematic substrates for DNA profiling; these hair types often contain insufficient nuclear DNA to yield short tandem repeat (STR) profiles. Whilst there have been a number of initial investigations evaluating the value of metagenomics analyses for forensic applications (e.g. examination of computer keyboards), there have been no metagenomic evaluations of human hairs-a substrate commonly encountered during forensic practice. This present study attempts to address this forensic capability gap, by conducting a qualitative assessment into the applicability of metagenomic analyses of human scalp and pubic hair. RESULTS: Forty-two DNA extracts obtained from human scalp and pubic hairs generated a total of 79,766 reads, yielding 39,814 reads post control and abundance filtering. The results revealed the presence of unique combinations of microbial taxa that can enable discrimination between individuals and signature taxa indigenous to female pubic hairs. Microbial data from a single co-habiting couple added an extra dimension to the study by suggesting that metagenomic analyses might be of evidentiary value in sexual assault cases when other associative evidence is not present. CONCLUSIONS: Of all the data generated in this study, the next-generation sequencing (NGS) data generated from pubic hair held the most potential for forensic applications. Metagenomic analyses of human hairs may provide independent data to augment other forensic results and possibly provide association between victims of sexual assault and offender when other associative evidence is absent. Based on results garnered in the present study, we believe that with further development, bacterial profiling of hair will become a valuable addition to the forensic toolkit.

8.
Mol Ecol ; 23(15): 3605-17, 2014 08.
Artículo en Inglés | MEDLINE | ID: mdl-24118181

RESUMEN

Effective management and conservation of biodiversity requires understanding of predator-prey relationships to ensure the continued existence of both predator and prey populations. Gathering dietary data from predatory species, such as insectivorous bats, often presents logistical challenges, further exacerbated in biodiversity hot spots because prey items are highly speciose, yet their taxonomy is largely undescribed. We used high-throughput sequencing (HTS) and bioinformatic analyses to phylogenetically group DNA sequences into molecular operational taxonomic units (MOTUs) to examine predator-prey dynamics of three sympatric insectivorous bat species in the biodiversity hotspot of south-western Australia. We could only assign between 4% and 20% of MOTUs to known genera or species, depending on the method used, underscoring the importance of examining dietary diversity irrespective of taxonomic knowledge in areas lacking a comprehensive genetic reference database. MOTU analysis confirmed that resource partitioning occurred, with dietary divergence positively related to the ecomorphological divergence of the three bat species. We predicted that bat species' diets would converge during times of high energetic requirements, that is, the maternity season for females and the mating season for males. There was an interactive effect of season on female, but not male, bat species' diets, although small sample sizes may have limited our findings. Contrary to our predictions, females of two ecomorphologically similar species showed dietary convergence during the mating season rather than the maternity season. HTS-based approaches can help elucidate complex predator-prey relationships in highly speciose regions, which should facilitate the conservation of biodiversity in genetically uncharacterized areas, such as biodiversity hotspots.


Asunto(s)
Quirópteros/fisiología , Dieta , Conducta Alimentaria , Insectos/clasificación , Conducta Predatoria , Animales , Biodiversidad , Quirópteros/clasificación , Conservación de los Recursos Naturales , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogenia , Estaciones del Año , Análisis de Secuencia de ADN , Australia del Sur , Especificidad de la Especie
9.
Investig Genet ; 4(1): 27, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24330620

RESUMEN

BACKGROUND: Wildlife collisions with aircraft cost the airline industry billions of dollars per annum and represent a public safety risk. Clearly, adapting aerodrome habitats to become less attractive to hazardous wildlife will reduce the incidence of collisions. Formulating effective habitat management strategies relies on accurate species identification of high-risk species. This can be successfully achieved for all strikes either through morphology and/or DNA-based identifications. Beyond species identification, dietary analysis of birdstrike gut contents can provide valuable intelligence for airport hazard management practices in regards to what food is attracting which species to aerodromes. Here, we present birdstrike identification and dietary data from Perth Airport, Western Australia, an aerodrome that saw approximately 140,000 aircraft movements in 2012. Next-generation high throughput DNA sequencing was employed to investigate 77 carcasses from 16 bird species collected over a 12-month period. Five DNA markers, which broadly characterize vertebrates, invertebrates and plants, were used to target three animal mitochondrial genes (12S rRNA, 16S rRNA, and COI) and a plastid gene (trnL) from DNA extracted from birdstrike carcass gastrointestinal tracts. RESULTS: Over 151,000 DNA sequences were generated, filtered and analyzed by a fusion-tag amplicon sequencing approach. Across the 77 carcasses, the most commonly identified vertebrate was Mus musculus (house mouse). Acrididae (grasshoppers) was the most common invertebrate family identified, and Poaceae (grasses) the most commonly identified plant family. The DNA-based dietary data has the potential to provide some key insights into feeding ecologies within and around the aerodrome. CONCLUSIONS: The data generated here, together with the methodological approach, will greatly assist in the development of hazard management plans and, in combination with existing observational studies, provide an improved way to monitor the effectiveness of mitigation strategies (for example, netting of water, grass type, insecticides and so on) at aerodromes. It is hoped that with the insights provided by dietary data, airports will be able to allocate financial resources to the areas that will achieve the best outcomes for birdstrike reduction.

10.
Sci Rep ; 3: 3371, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24288018

RESUMEN

Highly fragmented and morphologically indistinct fossil bone is common in archaeological and paleontological deposits but unfortunately it is of little use in compiling faunal assemblages. The development of a cost-effective methodology to taxonomically identify bulk bone is therefore a key challenge. Here, an ancient DNA methodology using high-throughput sequencing is developed to survey and analyse thousands of archaeological bones from southwest Australia. Fossils were collectively ground together depending on which of fifteen stratigraphical layers they were excavated from. By generating fifteen synthetic blends of bulk bone powder, each corresponding to a chronologically distinct layer, samples could be collectively analysed in an efficient manner. A diverse range of taxa, including endemic, extirpated and hitherto unrecorded taxa, dating back to c.46,000 years BP was characterized. The method is a novel, cost-effective use for unidentifiable bone fragments and a powerful molecular tool for surveying fossils that otherwise end up on the taxonomic "scrapheap".


Asunto(s)
Huesos/fisiología , ADN/genética , Arqueología/métodos , Australia , Fósiles
11.
PLoS Genet ; 8(4): e1002657, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22511890

RESUMEN

Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES) legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS) of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus) and Saiga antelope (Saiga tatarica). Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety especially when plant reference databases become better established.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Medicina Tradicional China , Plantas , ARN Ribosómico 16S , Animales , Antílopes/genética , Asarum/genética , Medicamentos Herbarios Chinos/efectos adversos , Especies en Peligro de Extinción/legislación & jurisprudencia , Ephedra/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Medicina Tradicional China/efectos adversos , Plantas/clasificación , Plantas/genética , Plantas/toxicidad , ARN Ribosómico 16S/genética , Ursidae/genética
12.
PLoS One ; 6(10): e25776, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21998697

RESUMEN

The genetic analysis of faecal material represents a relatively non-invasive way to study animal diet and has been widely adopted in ecological research. Due to the heterogeneous nature of faecal material the primary obstacle, common to all genetic approaches, is a means to dissect the constituent DNA sequences. Traditionally, bacterial cloning of PCR amplified products was employed; less common has been the use of species-specific quantitative PCR (qPCR) assays. Currently, with the advent of High-Throughput Sequencing (HTS) technologies and indexed primers it has become possible to conduct genetic audits of faecal material to a much greater depth than previously possible. To date, no studies have systematically compared the estimates obtained by HTS with that of qPCR. What are the relative strengths and weaknesses of each technique and how quantitative are deep-sequencing approaches that employ universal primers? Using the locally threatened Little Penguin (Eudyptula minor) as a model organism, it is shown here that both qPCR and HTS techniques are highly correlated and produce strikingly similar quantitative estimates of fish DNA in faecal material, with no statistical difference. By designing four species-specific fish qPCR assays and comparing the data to the same four fish in the HTS data it was possible to directly compare the strengths and weaknesses of both techniques. To obtain reproducible quantitative data one of the key, and often overlooked, steps common to both approaches is ensuring that efficient DNA isolation methods are employed and that extracts are free of inhibitors. Taken together, the methodology chosen for long-term faecal monitoring programs is largely dependent on the complexity of the prey species present and the level of accuracy that is desired. Importantly, these methods should not be thought of as mutually exclusive, as the use of both HTS and qPCR in tandem will generate datasets with the highest fidelity.


Asunto(s)
Alimentación Animal/análisis , ADN/genética , Heces , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Animales , Clonación Molecular , Spheniscidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...