Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Mol Cell ; 84(10): 1948-1963.e11, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759627

RESUMEN

The yeast glucose-induced degradation-deficient (GID) E3 ubiquitin ligase forms a suite of complexes with interchangeable receptors that selectively recruit N-terminal degron motifs of metabolic enzyme substrates. The orthologous higher eukaryotic C-terminal to LisH (CTLH) E3 complex has been proposed to also recognize substrates through an alternative subunit, WDR26, which promotes the formation of supramolecular CTLH E3 assemblies. Here, we discover that human WDR26 binds the metabolic enzyme nicotinamide/nicotinic-acid-mononucleotide-adenylyltransferase 1 (NMNAT1) and mediates its CTLH E3-dependent ubiquitylation independently of canonical GID/CTLH E3-family substrate receptors. The CTLH subunit YPEL5 inhibits NMNAT1 ubiquitylation and cellular turnover by WDR26-CTLH E3, thereby affecting NMNAT1-mediated metabolic activation and cytotoxicity of the prodrug tiazofurin. Cryoelectron microscopy (cryo-EM) structures of NMNAT1- and YPEL5-bound WDR26-CTLH E3 complexes reveal an internal basic degron motif of NMNAT1 essential for targeting by WDR26-CTLH E3 and degron mimicry by YPEL5's N terminus antagonizing substrate binding. Thus, our data provide a mechanistic understanding of how YPEL5-WDR26-CTLH E3 acts as a modulator of NMNAT1-dependent metabolism.


Asunto(s)
Nicotinamida-Nucleótido Adenililtransferasa , Profármacos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Células HEK293 , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Profármacos/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Especificidad por Sustrato , Microscopía por Crioelectrón , Unión Proteica
2.
FEBS Lett ; 598(9): 978-994, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575527

RESUMEN

Patients with Skraban-Deardorff syndrome (SKDEAS), a neurodevelopmental syndrome associated with a spectrum of developmental and intellectual delays and disabilities, harbor diverse mutations in WDR26, encoding a subunit of the multiprotein CTLH E3 ubiquitin ligase complex. Structural studies revealed that homodimers of WDR26 bridge two core-CTLH E3 complexes to generate giant, hollow oval-shaped supramolecular CTLH E3 assemblies. Additionally, WDR26 mediates CTLH E3 complex binding to subunit YPEL5 and functions as substrate receptor for the transcriptional repressor HBP1. Here, we mapped SKDEAS-associated mutations on a WDR26 structural model and tested their functionality in complementation studies using genetically engineered human cells lacking CTLH E3 supramolecular assemblies. Despite the diversity of mutations, 15 of 16 tested mutants impaired at least one CTLH E3 complex function contributing to complex assembly and interactions, thus providing first mechanistic insights into SKDEAS pathology.


Asunto(s)
Discapacidad Intelectual , Mutación , Ubiquitina-Proteína Ligasas , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Células HEK293 , Modelos Moleculares , Proteínas Adaptadoras Transductoras de Señales
3.
Cell Rep Med ; 5(3): 101468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508144

RESUMEN

Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.


Asunto(s)
Histona Demetilasas , Neuroblastoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Proteínas Oncogénicas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética
4.
Annu Rev Phys Chem ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38382570

RESUMEN

Genomes are self-organized and self-maintained as long, complex macromolecules of chromatin. The inherent heterogeneity, stochasticity, phase separation, and chromatin dynamics of genome operation make it challenging to study genomes using ensemble methods. Various single-molecule force-, fluorescent-, and sequencing-based techniques rooted in different disciplines have been developed to fill critical gaps in the capabilities of bulk measurements, each providing unique, otherwise inaccessible, insights into the structure and maintenance of the genome. Capable of capturing molecular-level details about the organization, conformational changes, and packaging of genetic material, as well as processive and stochastic movements of maintenance factors, a single-molecule toolbox provides an excellent opportunity for collaborative research to understand how genetic material functions in health and malfunctions in disease. In this review, we discuss novel insights brought to genomic sciences by single-molecule techniques and their potential to continue to revolutionize the field-one molecule at a time. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 75 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

5.
Nat Commun ; 15(1): 410, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195637

RESUMEN

Transmembrane E3 ligases play crucial roles in homeostasis. Much protein and organelle quality control, and metabolic regulation, are determined by ER-resident MARCH6 E3 ligases, including Doa10 in yeast. Here, we present Doa10/MARCH6 structural analysis by cryo-EM and AlphaFold predictions, and a structure-based mutagenesis campaign. The majority of Doa10/MARCH6 adopts a unique circular structure within the membrane. This channel is established by a lipid-binding scaffold, and gated by a flexible helical bundle. The ubiquitylation active site is positioned over the channel by connections between the cytosolic E3 ligase RING domain and the membrane-spanning scaffold and gate. Here, by assaying 95 MARCH6 variants for effects on stability of the well-characterized substrate SQLE, which regulates cholesterol levels, we reveal crucial roles of the gated channel and RING domain consistent with AlphaFold-models of substrate-engaged and ubiquitylation complexes. SQLE degradation further depends on connections between the channel and RING domain, and lipid binding sites, revealing how interconnected Doa10/MARCH6 elements could orchestrate metabolic signals, substrate binding, and E3 ligase activity.


Asunto(s)
Bioensayo , Ubiquitina-Proteína Ligasas , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Sitios de Unión , Saccharomyces cerevisiae/genética , Lípidos
6.
Nat Chem Biol ; 19(12): 1513-1523, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37653169

RESUMEN

The cullin-RING ubiquitin ligase (CRL) network comprises over 300 unique complexes that switch from inactive to activated conformations upon site-specific cullin modification by the ubiquitin-like protein NEDD8. Assessing cellular repertoires of activated CRL complexes is critical for understanding eukaryotic regulation. However, probes surveying networks controlled by site-specific ubiquitin-like protein modifications are lacking. We developed a synthetic antibody recognizing the active conformation of NEDD8-linked cullins. Implementing the probe to profile cellular networks of activated CUL1-, CUL2-, CUL3- and CUL4-containing E3s revealed the complexes responding to stimuli. Profiling several cell types showed their baseline neddylated CRL repertoires vary, and prime efficiency of targeted protein degradation. Our probe also unveiled differential rewiring of CRL networks across distinct primary cell activation pathways. Thus, conformation-specific probes can permit nonenzymatic activity-based profiling across a system of numerous multiprotein complexes, which in the case of neddylated CRLs reveals widespread regulation and could facilitate the development of degrader drugs.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Proteínas Cullin/genética , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteína NEDD8/metabolismo
7.
Eur J Immunol ; 53(10): e2350475, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452620

RESUMEN

Alveolar macrophages (alvMs) play an important role for maintenance of lung function by constant removal of cellular debris in the alveolar space. They further contribute to defense against microbial or viral infections and limit tissue damage during acute lung injury. alvMs arise from embryonic progenitor cells, seed the alveoli before birth, and have life-long self-renewing capacity. However, recruited monocytes may also help to restore the alvM population after depletion caused by toxins or influenza virus infection. At present, the population dynamics and cellular plasticity of alvMs during allergic lung inflammation is poorly defined. To address this point, we used a mouse model of Aspergillus fumigatus-induced allergic lung inflammation and observed that Th2-derived IL-4 and IL-13 caused almost complete disappearance of alvMs. This effect required STAT6 expression in alvMs and also occurred in various other settings of type 2 immunity-mediated lung inflammation or administration of IL-4 complexes to the lung. In addition, Th2 cells promoted conversion of alvMs to alternatively activated macrophages and multinucleated giant cells. Given the well-established role of alvMs for maintenance of lung function, this process may have implications for resolution of inflammation and tissue homeostasis in allergic asthma.


Asunto(s)
Asma , Neumonía , Eosinofilia Pulmonar , Ratones , Animales , Macrófagos Alveolares , Interleucina-4/metabolismo , Pulmón/metabolismo , Asma/metabolismo , Inflamación/metabolismo , Neumonía/metabolismo
8.
J Biol Chem ; 299(6): 104827, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37196768

RESUMEN

Regulated tryptophan metabolism by immune cells has been associated with the promotion of tolerance and poor outcomes in cancer. The main focus of research has centered on local tryptophan depletion by IDO1, an intracellular heme-dependent oxidase that converts tryptophan to formyl-kynurenine. This is the first step of a complex pathway supplying metabolites for de novo NAD+ biosynthesis, 1-carbon metabolism, and a myriad of kynurenine derivatives of which several act as agonists of the arylhydrocarbon receptor (AhR). Thus, cells that express IDO1 deplete tryptophan while generating downstream metabolites. We now know that another enzyme, the secreted L-amino acid oxidase IL4i1 also generates bioactive metabolites from tryptophan. In tumor microenvironments, IL4i1 and IDO1 have overlapping expression patterns, especially in myeloid cells, suggesting the two enzymes control a network of tryptophan-specific metabolic events. New findings about IL4i1 and IDO1 have shown that both enzymes generate a suite of metabolites that suppress oxidative cell death ferroptosis. Thus, within inflammatory environments, IL4i1 and IDO1 simultaneously control essential amino acid depletion, AhR activation, suppression of ferroptosis, and biosynthesis of key metabolic intermediates. Here, we summarize the recent advances in this field, focusing on IDO1 and IL4i1 in cancer. We speculate that while inhibition of IDO1 remains a viable adjuvant therapy for solid tumors, the overlapping effects of IL4i1 must be accounted for, as potentially both enzymes may need to be inhibited at the same time to produce positive effects in cancer therapy.


Asunto(s)
Neoplasias , Triptófano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Neoplasias/metabolismo , Oxidorreductasas , Triptófano/metabolismo , Microambiente Tumoral
9.
Curr Zool ; 69(1): 1-11, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36974152

RESUMEN

Human-dominated landscapes provide heterogeneous wildlife habitat. Conservation of habitat specialists, like red pandas Ailurus fulgens, inhabiting such landscapes is challenging. Therefore, information on resource use across spatial and temporal scales could enable informed-decision making with better conservation outcomes. We aimed to examine the effect of geo-physical, vegetation, and disturbance variables on fine-scale habitat selection of red pandas in one such landscape. We equipped 10 red pandas with GPS collars in eastern Nepal in 2019 and monitored them for 1 year. Our analysis was based on a generalized-linear-mixed model. We found the combined effect of geo-physical, vegetation, and disturbance variables resulted in differences in resource selection of red pandas and that the degree of response to these variables varied across seasons. Human disturbances, especially road and cattle herding activities, affected habitat utilization throughout the year whereas other variables were important only during restricted periods. For instance, geo-physical variables were influential in the premating and cub-rearing seasons while vegetation variables were important in all seasons other than premating. Red pandas selected steeper slopes with high solar insolation in the premating season while they occupied elevated areas and preferred specific aspects in the cub-rearing season. Furthermore, the utilized areas had tall bamboo in the birthing and cub-rearing seasons while they also preferred diverse tree species and high shrub cover in the latter. Our study demonstrates the significance of season-specific management, suggests the importance of specific types of vegetation during biologically crucial periods, and emphasizes the necessity to minimize disturbances throughout the year.

10.
bioRxiv ; 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711970

RESUMEN

The cullin-RING E3 ligase (CRL) network comprises over 300 unique complexes that switch from inactive to activated conformations upon site-specific cullin modification by the ubiquitin-like protein NEDD8. Assessing cellular repertoires of activated CRL complexes is critical for understanding eukaryotic regulation. However, probes surveying networks controlled by site-specific ubiquitin-like protein modifications are lacking. We report development of a synthetic antibody recognizing the active conformation of a NEDD8-linked cullin. We established a pipeline probing cellular networks of activated CUL1-, CUL2-, CUL3- and CUL4-containing CRLs, revealing the CRL complexes responding to stimuli. Profiling several cell types showed their baseline neddylated CRL repertoires vary, prime efficiency of targeted protein degradation, and are differentially rewired across distinct primary cell activation pathways. Thus, conformation-specific probes can permit nonenzymatic activity-based profiling across a system of numerous multiprotein complexes, which in the case of neddylated CRLs reveals widespread regulation and could facilitate development of degrader drugs.

11.
Am J Respir Cell Mol Biol ; 68(4): 366-380, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36227799

RESUMEN

Profibrotic and prohomeostatic macrophage phenotypes remain ill-defined, both in vivo and in vitro, impeding the successful development of drugs that reprogram macrophages as an attractive therapeutic approach to manage fibrotic disease. The goal of this study was to reveal profibrotic and prohomeostatic macrophage phenotypes that could guide the design of new therapeutic approaches targeting macrophages to treat fibrotic disease. This study used nintedanib, a broad kinase inhibitor approved for idiopathic pulmonary fibrosis, to dissect lung macrophage phenotypes during fibrosis-linked inflammation by combining in vivo and in vitro bulk and single-cell RNA-sequencing approaches. In the bleomycin model, nintedanib drove the expression of IL-4/IL-13-associated genes important for tissue regeneration and repair at early and late time points in lung macrophages. These findings were replicated in vitro in mouse primary bone marrow-derived macrophages exposed to IL-4/IL-13 and nintedanib. In addition, nintedanib promoted the expression of IL-4/IL-13 pathway genes in human macrophages in vitro. The molecular mechanism was connected to inhibition of the colony stimulating factor 1 (CSF1) receptor in both human and mouse macrophages. Moreover, nintedanib counterbalanced the effects of TNF on IL-4/IL-13 in macrophages to promote expression of IL-4/IL-13-regulated tissue repair genes in fibrotic contexts in vivo and in vitro. This study demonstrates that one of nintedanib's antifibrotic mechanisms is to increase IL-4 signaling in macrophages through inhibition of the CSF1 receptor, resulting in the promotion of tissue repair phenotypes.


Asunto(s)
Fibrosis Pulmonar Idiopática , Indoles , Macrófagos , Indoles/farmacología , Animales , Ratones , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Interleucina-4/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
12.
EMBO Mol Med ; 15(2): e15931, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479617

RESUMEN

Infection with the intracellular bacterium Coxiella (C.) burnetii can cause chronic Q fever with severe complications and limited treatment options. Here, we identify the enzyme cis-aconitate decarboxylase 1 (ACOD1 or IRG1) and its product itaconate as protective host immune pathway in Q fever. Infection of mice with C. burnetii induced expression of several anti-microbial candidate genes, including Acod1. In macrophages, Acod1 was essential for restricting C. burnetii replication, while other antimicrobial pathways were dispensable. Intratracheal or intraperitoneal infection of Acod1-/- mice caused increased C. burnetii burden, weight loss and stronger inflammatory gene expression. Exogenously added itaconate restored pathogen control in Acod1-/- mouse macrophages and blocked replication in human macrophages. In axenic cultures, itaconate directly inhibited growth of C. burnetii. Finally, treatment of infected Acod1-/- mice with itaconate efficiently reduced the tissue pathogen load. Thus, ACOD1-derived itaconate is a key factor in the macrophage-mediated defense against C. burnetii and may be exploited for novel therapeutic approaches in chronic Q fever.


Asunto(s)
Coxiella burnetii , Fiebre Q , Animales , Humanos , Ratones , Coxiella burnetii/genética , Macrófagos , Fiebre Q/genética , Fiebre Q/microbiología
13.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459066

RESUMEN

Progressive accrual of senescent cells in aging and chronic diseases is associated with detrimental effects in tissue homeostasis. We found that senescent fibroblasts and epithelia were not only refractory to macrophage-mediated engulfment and removal, but they also paralyzed the ability of macrophages to remove bystander apoptotic corpses. Senescent cell-mediated efferocytosis suppression (SCES) was independent of the senescence-associated secretory phenotype (SASP) but instead required direct contact between macrophages and senescent cells. SCES involved augmented senescent cell expression of CD47 coinciding with increased CD47-modifying enzymes QPCT/L. SCES was reversible by interfering with the SIRPα-CD47-SHP-1 axis or QPCT/L activity. While CD47 expression increased in human and mouse senescent cells in vitro and in vivo, another ITIM-containing protein, CD24, contributed to SCES specifically in human epithelial senescent cells where it compensated for genetic deficiency in CD47. Thus, CD47 and CD24 link the pathogenic effects of senescent cells to homeostatic macrophage functions, such as efferocytosis, which we hypothesize must occur efficiently to maintain tissue homeostasis.


Asunto(s)
Apoptosis , Antígeno CD47 , Macrófagos , Fenotipo Secretor Asociado a la Senescencia , Animales , Humanos , Ratones , Aminoaciltransferasas/metabolismo , Antígeno CD24/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Macrófagos/citología , Regulación hacia Arriba
14.
Elife ; 112022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459484

RESUMEN

The development of haematopoietic stem cells into mature erythrocytes - erythropoiesis - is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood. By measuring the proteomic landscape of in vitro human erythropoiesis models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase complex that formed maturation stage-dependent assemblies of topologically homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of CTLH's cognate E2 ubiquitin conjugating enzyme UBE2H increased during terminal differentiation, and UBE2H expression depended on catalytically active CTLH E3 complexes. CRISPR-Cas9-mediated inactivation of CTLH E3 assemblies or UBE2H in erythroid progenitors revealed defects, including spontaneous and accelerated erythroid maturation as well as inefficient enucleation. Thus, we propose that dynamic maturation stage-specific changes of UBE2H-CTLH E2-E3 modules control the orderly progression of human erythropoiesis.


Asunto(s)
Eritropoyesis , Proteómica , Humanos , Eritrocitos , Proteoma , Ubiquitina , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas Asociadas a Microtúbulos , Factores de Intercambio de Guanina Nucleótido
15.
J Biol Chem ; 298(12): 102629, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36273589

RESUMEN

mTORC1 and GCN2 are serine/threonine kinases that control how cells adapt to amino acid availability. mTORC1 responds to amino acids to promote translation and cell growth while GCN2 senses limiting amino acids to hinder translation via eIF2α phosphorylation. GCN2 is an appealing target for cancer therapies because malignant cells can harness the GCN2 pathway to temper the rate of translation during rapid amino acid consumption. To isolate new GCN2 inhibitors, we created cell-based, amino acid limitation reporters via genetic manipulation of Ddit3 (encoding the transcription factor CHOP). CHOP is strongly induced by limiting amino acids and in this context, GCN2-dependent. Using leucine starvation as a model for essential amino acid sensing, we unexpectedly discovered ATP-competitive PI3 kinase-related kinase inhibitors, including ATR and mTOR inhibitors like torins, completely reversed GCN2 activation in a time-dependent way. Mechanistically, via inhibiting mTORC1-dependent translation, torins increased intracellular leucine, which was sufficient to reverse GCN2 activation and the downstream integrated stress response including stress-induced transcriptional factor ATF4 expression. Strikingly, we found that general translation inhibitors mirrored the effects of torins. Therefore, we propose that mTOR kinase inhibitors concurrently inhibit different branches of amino acid sensing by a dual mechanism involving direct inhibition of mTOR and indirect suppression of GCN2 that are connected by effects on the translation machinery. Collectively, our results highlight distinct ways of regulating GCN2 activity.


Asunto(s)
Aminoácidos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Aminoácidos/genética , Aminoácidos/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Front Immunol ; 13: 880474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585969

RESUMEN

Successful subunit vaccination with recombinant proteins requires adjuvants. The glycolipid trehalose-dibehenate (TDB), a synthetic analog of the mycobacterial cord factor, potently induces Th1 and Th17 immune responses and is a candidate adjuvant for human immunization. TDB binds to the C-type lectin receptor Mincle and triggers Syk-Card9-dependent APC activation. In addition, interleukin (IL)-1 receptor/MyD88-dependent signaling is required for TDB adjuvanticity. The role of different innate immune cell types in adjuvant-stimulated Th1/Th17 responses is not well characterized. We investigated cell recruitment to the site of injection (SOI) and to the draining lymph nodes (dLNs) after immunization with the TDB containing adjuvant CAF01 in a protein-based vaccine. Recruitment of monocytes and neutrophils to the SOI and the dramatic increase in lymph node cellularity was partially dependent on both Mincle and MyD88. Despite their large numbers at the SOI, neutrophils were dispensable for the induction of Th1/Th17 responses. In contrast, CCR2-dependent monocyte recruitment was essential for the induction of Th1/Th17 cells. Transport of adjuvant to the dLN did not require Mincle, MyD88, or CCR2. Together, adjuvanticity conferred by monocytes can be separated at the cellular level from potential tissue damage by neutrophils.


Asunto(s)
Monocitos , Células Th17 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adyuvantes Inmunológicos/química , Glucolípidos , Humanos , Inmunización , Factor 88 de Diferenciación Mieloide/metabolismo , Neutrófilos , Receptores de Interleucina-1/metabolismo , Vacunación
17.
Sci Immunol ; 7(70): eabl7482, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427180

RESUMEN

Macrophages populate every organ during homeostasis and disease, displaying features of tissue imprinting and heterogeneous activation. The disconnected picture of macrophage biology that has emerged from these observations is a barrier for integration across models or with in vitro macrophage activation paradigms. We set out to contextualize macrophage heterogeneity across mouse tissues and inflammatory conditions, specifically aiming to define a common framework of macrophage activation. We built a predictive model with which we mapped the activation of macrophages across 12 tissues and 25 biological conditions, finding a notable commonality and finite number of transcriptional profiles, in particular among infiltrating macrophages, which we modeled as defined stages along four conserved activation paths. These activation paths include a "phagocytic" regulatory path, an "inflammatory" cytokine-producing path, an "oxidative stress" antimicrobial path, or a "remodeling" extracellular matrix deposition path. We verified this model with adoptive cell transfer experiments and identified transient RELMɑ expression as a feature of monocyte-derived macrophage tissue engraftment. We propose that this integrative approach of macrophage classification allows the establishment of a common predictive framework of monocyte-derived macrophage activation in inflammation and homeostasis.


Asunto(s)
Activación de Macrófagos , Macrófagos , Animales , Citocinas/metabolismo , Homeostasis , Inflamación/metabolismo , Ratones
18.
Animals (Basel) ; 12(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35405861

RESUMEN

Koalas are facing many threats and have now been officially listed as endangered. Recently, concerns were raised in anecdotal reports of koalas being killed by livestock, especially cattle. We investigated the significance of cattle as a threat to koala survival via two koala-cattle interaction experiments, from both the koala and cattle perspectives. In the first experiment, we recorded the ranging behaviour of free-ranging, radio-collared koalas prior to, during and after cattle grazed within their usual home range. Koalas decreased their distance travelled and the size of their home range when they shared space with cattle, compared with the period before cattle started grazing within their home range. In the second experiment, we recorded the reactions of cattle towards koalas that they encountered on the ground, using motorised animal models: a model koala mounted on a remote-controlled vehicle and a model dog mounted on the same vehicle, and the vehicle alone. The koala model elicited aggression and fear in cattle, similar to the dog model, whereas their reaction to the vehicle was significantly less aggressive. No actual attacks by the cattle were observed. The results provide experimental evidence that negative koala-livestock interactions occur and indicate that cattle and koalas may see each other as a disturbance.

19.
Mol Cell ; 82(5): 920-932.e7, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245456

RESUMEN

IDO1 oxidizes tryptophan (TRP) to generate kynurenine (KYN), the substrate for 1-carbon and NAD metabolism, and is implicated in pro-cancer pathophysiology and infection biology. However, the mechanistic relationships between IDO1 in amino acid depletion versus product generation have remained a longstanding mystery. We found an unrecognized link between IDO1 and cell survival mediated by KYN that serves as the source for molecules that inhibit ferroptotic cell death. We show that this effect requires KYN export from IDO1-expressing cells, which is then available for non-IDO1-expressing cells via SLC7A11, the central transporter involved in ferroptosis suppression. Whether inside the "producer" IDO1+ cell or the "receiver" cell, KYN is converted into downstream metabolites, suppressing ferroptosis by ROS scavenging and activating an NRF2-dependent, AHR-independent cell-protective pathway, including SLC7A11, propagating anti-ferroptotic signaling. IDO1, therefore, controls a multi-pronged protection pathway from ferroptotic cell death, underscoring the need to re-evaluate the use of IDO1 inhibitors in cancer treatment.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Quinurenina , Neoplasias , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Quinurenina/farmacología , Neoplasias/metabolismo , Transducción de Señal , Triptófano/metabolismo
20.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35027468

RESUMEN

Anti-TNF therapies are a core anti-inflammatory approach for chronic diseases such as rheumatoid arthritis and Crohn's Disease. Previously, we and others found that TNF blocks the emergence and function of alternative-activated or M2 macrophages involved in wound healing and tissue-reparative functions. Conceivably, anti-TNF drugs could mediate their protective effects in part by an altered balance of macrophage activity. To understand the mechanistic basis of how TNF regulates tissue-reparative macrophages, we used RNAseq, scRNAseq, ATACseq, time-resolved phospho-proteomics, gene-specific approaches, metabolic analysis, and signaling pathway deconvolution. We found that TNF controls tissue-reparative macrophage gene expression in a highly gene-specific way, dependent on JNK signaling via the type 1 TNF receptor on specific populations of alternative-activated macrophages. We further determined that JNK signaling has a profound and broad effect on activated macrophage gene expression. Our findings suggest that TNF's anti-M2 effects evolved to specifically modulate components of tissue and reparative M2 macrophages and TNF is therefore a context-specific modulator of M2 macrophages rather than a pan-M2 inhibitor.


Asunto(s)
Macrófagos , Transcripción Genética , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Femenino , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Inhibidores del Factor de Necrosis Tumoral/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...