Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064155

RESUMEN

Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug's delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.

2.
Nanoscale ; 7(15): 6588-98, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25789459

RESUMEN

Cerium Oxide nanoparticles (CeO(2-x) NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO(2-x) NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO(2-x) NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO(2-x) NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO(2-x) NPs. The brush coating does not prevent CeO(2-x) NPs from displaying antioxidant properties.


Asunto(s)
Cerio/química , Nanopartículas del Metal/química , Polímeros/química , Especies Reactivas de Oxígeno/química , Apoptosis , Linaje de la Célula , Separación Celular , Coloides/química , Citometría de Flujo , Fluoresceína-5-Isotiocianato/química , Células HEK293 , Humanos , Espectrometría de Masas , Metacrilatos/química , Microscopía Confocal , Microscopía Electrónica de Transmisión , Espectrometría Raman
3.
Small ; 10(13): 2602-10, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24639360

RESUMEN

The dynamic behaviour of gold nanoparticles functionalised with glucose (Glc-Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc-Au NPs fluorescently-labelled with HiLyte Fluor647 (Glc-Au-Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell. FCS measurements become possible after applying a "prebleaching" methodology, when the immobile NP fraction has been effectively removed and thus significant FCS data has been recorded. In this study, Glc-Au-Hi NPs have been incubated with HepG2 cells and their diffusion time in the intracellular environment has been measured and compared with their diffusion value in water and cell media.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas del Metal , Espectrometría de Fluorescencia/métodos , Microscopía Electrónica de Transmisión
4.
J Colloid Interface Sci ; 421: 132-40, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24594041

RESUMEN

Hybrid polyelectrolyte multilayer systems were fabricated on top of planar surfaces and colloidal particles via layer by layer (LbL) assembly of polystyrene sulphonate (PSS) and polybenzyl methacrylate-block-poly(dimethylamino)ethyl methacrylate (PBzMA-b-PDMAEMA) polymersomes. Polymersomes were prepared by self assembly of PBzMA-b-PDMAEMA copolymer, synthesised by group transfer polymerisation. Polymersomes display a diameter of 270 nm and a shell thickness of 11nm. Assembly on planar surfaces was followed by means of the Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). Detailed information on the assembly mechanism and surface topology of the polymersome/polyelectrolyte films was thereby obtained. The assembly of polymersomes and PSS on top of silica particles of 500 nm in diameter was confirmed by ζ-potential measurements. Confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that polymersome/PSS coated silica particles increase in total diameter up to 3-5µm. This hints toward the formation of densely packed polymersome layers. In addition, CLSM showed that polymersome/PSS films exhibit a high loading capacity that could potentially be used for encapsulation and delivery of diverse chemical species. These results provide an insight into the formation of multilayered films with compartmentalised hydrophilic/hydrophobic domains and may lead to the successful application of polymersomes in surface-engineered colloidal systems.


Asunto(s)
Coloides/química , Electrólitos/química , Polímeros/química , Microscopía/métodos , Tamaño de la Partícula
5.
J Mater Chem B ; 2(7): 826-833, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32261314

RESUMEN

The intracellular degradation of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) is studied by means of flow cytometry (FACS). NPs are prepared with PLGA of two different ratios of the d,l-lactide and glycolide blocks: 85 : 15 and 65 : 35. PLGA molecules are labelled with rhodamine B. Flow cytometry is first used to follow the degradation of PLGA NPs in PBS over time by measuring the decrease in fluorescence per particle. The 85 : 15 PLGA NPs progressively degrade during the first 10 days and remain constant thereafter. The 65 : 35 PLGA NPs remain unaltered, showing no changes in fluorescence intensity. FACS data are confirmed by transmission electron microscopy and dynamic light scattering measurements. Intracellular degradation of 85 : 15 PLGA is measured by the increase in fluorescence intensity in the cell population with time due to the liberation of rhodamine B labelled PLGA molecules from NPs in the cell interior where rhodamine displays an increased quantum yield. The fluorescence intensity from 85 : 15 PLGA NPs increases up to 24 hours, remaining constant thereafter. No change in the fluorescence of 65 : 35 PLGA NPs is observed after 4 days. The intracellular behaviour of the PLGA NPs is also confirmed by confocal Raman microscopy.

6.
Macromol Biosci ; 13(2): 234-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23316003

RESUMEN

The intracellular delivery of Doxorubicin (Dox) from poly(lactide-co-glycolide) (PLGA) nanoparticles stabilised with bovine serum albumin, in HepG2 cells, is studied via flow cytometry, fluorescence lifetime imaging microscopy (FLIM), confocal Raman microscopy (CRM) and cell viability studies. Flow cytometry shows that the initial uptake of PLGA and Dox follow the same kinetics. However, following 8 h of incubation, the fluorescence intensity and cellular uptake of Dox decreases, while in the case of PLGA both parameters remain constant. FLIM shows the presence of a single-lifetime species, with a lifetime of 1.15 ns when measured inside the cells. Cell viability decreases by approximately 20% when incubated for 24 h with PLGA loaded with Dox, with a particle concentration of 100 µg · mL(-1). At the single-cell level, CRM shows changes in the bands from DNA and proteins in the cell nucleus when incubated with PLGA loaded with Dox.


Asunto(s)
Doxorrubicina/administración & dosificación , Portadores de Fármacos , Ácido Láctico/administración & dosificación , Nanopartículas/administración & dosificación , Ácido Poliglicólico/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacocinética , Citometría de Flujo , Células Hep G2 , Humanos , Ácido Láctico/farmacocinética , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...