Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586678

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Antígenos Virales/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/fisiología , Proteínas no Estructurales Virales/inmunología , Activación Viral/efectos de los fármacos , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular Transformada , Infecciones por Citomegalovirus/patología , Humanos , Activación Viral/inmunología
2.
PLoS One ; 16(1): e0245382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33497420

RESUMEN

Antibody responses are important in the control of viral respiratory infection in the human host. What is not clear for SARS-CoV-2 is how rapidly this response occurs, or when antibodies with protective capability evolve. Hence, defining the events of SARS-CoV-2 seroconversion and the time frame for the development of antibodies with protective potential may help to explain the different clinical presentations of COVID-19. Furthermore, accurate descriptions of seroconversion are needed to inform the best use of serological assays for diagnostic testing and serosurveillance studies. Here, we describe the humoral responses in a cohort of hospitalised COVID-19 patients (n = 19) shortly following the onset of symptoms. Commercial and 'in-house' serological assays were used to measure IgG antibodies against different SARS-CoV-2 structural antigens-Spike (S) S1 sub-unit and Nucleocapsid protein (NP)-and to assess the potential for virus neutralisation mediated specifically by inhibition of binding between the viral attachment protein (S protein) and cognate receptor (ACE-2). Antibody response kinetics varied amongst the cohort, with patients seroconverting within 1 week, between 1-2 weeks, or after 2 weeks, following symptom onset. Anti-NP IgG responses were generally detected earlier, but reached maximum levels slower, than anti-S1 IgG responses. The earliest IgG antibodies produced by all patients included those that recognised the S protein receptor-binding domain (RBD) and were capable of inhibiting binding to ACE-2. These data revealed events and patterns of SARS-CoV-2 seroconversion that may be important predictors of the outcome of infection and guide the delivery of clinical services in the COVID-19 response.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , Estudios de Cohortes , Proteínas de la Nucleocápside de Coronavirus/química , Femenino , Hospitalización , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Fosfoproteínas/química , SARS-CoV-2/química , Seroconversión , Glicoproteína de la Espiga del Coronavirus/química , Gales
3.
Proc Natl Acad Sci U S A ; 115(19): 4998-5003, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29691324

RESUMEN

CD58 is an adhesion molecule that is known to play a critical role in costimulation of effector cells and is intrinsic to immune synapse structure. Herein, we describe a virally encoded gene that inhibits CD58 surface expression. Human cytomegalovirus (HCMV) UL148 was necessary and sufficient to promote intracellular retention of CD58 during HCMV infection. Blocking studies with antagonistic anti-CD58 mAb and an HCMV UL148 deletion mutant (HCMV∆UL148) with restored CD58 expression demonstrated that the CD2/CD58 axis was essential for the recognition of HCMV-infected targets by CD8+ HCMV-specific cytotoxic T lymphocytes (CTLs). Further, challenge of peripheral blood mononuclear cells ex vivo with HCMV∆UL148 increased both CTL and natural killer (NK) cell degranulation against HCMV-infected cells, including NK-driven antibody-dependent cellular cytotoxicity, showing that UL148 is a modulator of the function of multiple effector cell subsets. Our data stress the effect of HCMV immune evasion functions on shaping the immune response, highlighting the capacity for their potential use in modulating immunity during the development of anti-HCMV vaccines and HCMV-based vaccine vectors.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Evasión Inmune , Inmunidad Celular , Células Asesinas Naturales/inmunología , Proteínas Virales de Fusión/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular Transformada , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Humanos , Células Asesinas Naturales/patología , Proteínas Virales de Fusión/genética
4.
Proc Natl Acad Sci U S A ; 114(23): 6104-6109, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533400

RESUMEN

Human cytomegalovirus (HCMV) strains that have been passaged in vitro rapidly acquire mutations that impact viral growth. These laboratory-adapted strains of HCMV generally exhibit restricted tropism, produce high levels of cell-free virus, and develop susceptibility to natural killer cells. To permit experimentation with a virus that retained a clinically relevant phenotype, we reconstructed a wild-type (WT) HCMV genome using bacterial artificial chromosome technology. Like clinical virus, this genome proved to be unstable in cell culture; however, propagation of intact virus was achieved by placing the RL13 and UL128 genes under conditional expression. In this study, we show that WT-HCMV produces extremely low titers of cell-free virus but can efficiently infect fibroblasts, epithelial, monocyte-derived dendritic, and Langerhans cells via direct cell-cell transmission. This process of cell-cell transfer required the UL128 locus, but not the RL13 gene, and was significantly less vulnerable to the disruptive effects of IFN, cellular restriction factors, and neutralizing antibodies compared with cell-free entry. Resistance to neutralizing antibodies was dependent on high-level expression of the pentameric gH/gL/gpUL128-131A complex, a feature of WT but not passaged strains of HCMV.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Anticuerpos Neutralizantes , Línea Celular , Células Cultivadas , Cromosomas Artificiales Bacterianos/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Mutación , Fenotipo , Tropismo/inmunología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Replicación Viral/inmunología
5.
J Virol ; 90(8): 3929-43, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26842472

RESUMEN

UNLABELLED: Clinical human cytomegalovirus (HCMV) strains invariably mutate when propagatedin vitro Mutations in gene RL13 are selected in all cell types, whereas in fibroblasts mutants in the UL128 locus (UL128L; genes UL128, UL130, and UL131A) are also selected. In addition, sporadic mutations are selected elsewhere in the genome in all cell types. We sought to investigate conditions under which HCMV can be propagated without incurring genetic defects. Bacterial artificial chromosomes (BACs) provide a stable, genetically defined source of viral genome. Viruses were generated from BACs containing the genomes of strains TR, TB40, FIX, and Merlin, as well as from Merlin-BAC recombinants containing variant nucleotides in UL128L from TB40-BAC4 or FIX-BAC. Propagation of viruses derived from TR-BAC, TB40-BAC4, and FIX-BAC in either fibroblast or epithelial cells was associated with the generation of defects around the prokaryotic vector, which is retained in the unique short (US) region of viruses. This was not observed for Merlin-BAC, from which the vector is excised in derived viruses; however, propagation in epithelial cells was consistently associated with mutations in the unique longb' (UL/b') region, all impacting on gene UL141. Viruses derived from Merlin-BAC in fibroblasts had mutations in UL128L, but mutations occurred less frequently with recombinants containing UL128L nucleotides from TB40-BAC4 or FIX-BAC. Viruses derived from a Merlin-BAC derivative in which RL13 and UL128L were either mutated or repressed were remarkably stable in fibroblasts. Thus, HCMV containing a wild-type gene complement can be generatedin vitroby deriving virus from a self-excising BAC in fibroblasts and repressing RL13 and UL128L. IMPORTANCE: Researchers should aim to study viruses that accurately represent the causative agents of disease. This is problematic for HCMV because clinical strains mutate rapidly when propagatedin vitro, becoming less cell associated, altered in tropism, more susceptible to natural killer cells, and less pathogenic. Following isolation from clinical material, HCMV genomes can be stabilized by cloning into bacterial artificial chromosomes (BACs), and then virus is regenerated by DNA transfection. However, mutations can occur not only during isolation prior to BAC cloning but also when virus is regenerated. We have identified conditions under which BAC-derived viruses containing an intact, wild-type genome can be propagatedin vitrowith minimal risk of mutants being selected, enabling studies of viruses expressing the gene complement of a clinical strain. However, even under these optimized conditions, sporadic mutations can occur, highlighting the advisability of sequencing the HCMV stocks used in experiments.


Asunto(s)
Cromosomas Artificiales Bacterianos , Citomegalovirus/crecimiento & desarrollo , Cultivo de Virus/métodos , Línea Celular , Citomegalovirus/genética , Células Epiteliales , Fibroblastos , Genes Virales , Genoma Viral , Inestabilidad Genómica , Humanos , Técnicas In Vitro , Glicoproteínas de Membrana/genética , Proteínas del Envoltorio Viral/genética
6.
Med Microbiol Immunol ; 204(3): 273-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25894764

RESUMEN

In celebrating the 60th anniversary of the first isolation of human cytomegalovirus (HCMV), we reflect on the merits and limitations of the viral strains currently being used to develop urgently needed treatments. HCMV research has been dependent for decades on the high-passage strains AD169 and Towne, heavily exploiting their capacity to replicate efficiently in fibroblasts. However, the genetic integrity of these strains is so severely compromised that great caution needs to be exercised when considering their past and future use. It is now evident that wild-type HCMV strains are not readily propagated in vitro. HCMV mutants are rapidly selected during isolation in fibroblasts, reproducibly affecting gene RL13, the UL128 locus (which includes genes UL128, UL130 and UL131A) and often the U(L)/b' region. As a result, the virus becomes less cell associated, altered in tropism and less pathogenic. This problem is not restricted to high-passage strains, as even low-passage strains can harbour biologically significant mutations. Cloning and manipulation of the HCMV genome as a bacterial artificial chromosome (BAC) offers a means of working with stable, genetically defined strains. To this end, the low-passage strain Merlin genome was cloned as a BAC and sequentially repaired to match the viral sequence in the original clinical sample from which Merlin was derived. Restoration of UL128L to wild type was detrimental to growth in fibroblasts, whereas restoration of RL13 impaired growth in all cell types tested. Stable propagation of phenotypically wild-type virus could be achieved only by placing both regions under conditional expression. In addition to the development of these tools, the Merlin transcriptome and proteome have been characterized in unparalleled detail. Although Merlin may be representative of the clinical agent, high-throughput whole-genome deep sequencing studies have highlighted the remarkable high level of interstrain variation present in circulating virus. There is a need to develop systems capable of addressing the significance of this diversity, free from the confounding effects of genetic changes associated with in vitro adaptation. The generation of a set of BAC clones, each containing the genome of a different HCMV strain repaired to match the sequence in the clinical sample, would provide a pathway to address the biological and clinical effects of natural variation in wild-type HCMV.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Animales , Citomegalovirus/clasificación , Evolución Molecular , Regulación Viral de la Expresión Génica , Genes Virales , Variación Genética , Genoma Viral , Humanos , Mutación , Selección Genética , Biología de Sistemas
7.
Cell ; 157(6): 1460-1472, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24906157

RESUMEN

A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called "quantitative temporal viromics" (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Interacciones Huésped-Patógeno , Proteómica , Virología/métodos , Humanos , Evasión Inmune , Células Asesinas Naturales/inmunología , Transducción de Señal , Linfocitos T/inmunología , Proteínas Virales/análisis
8.
J Virol ; 87(19): 10489-500, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23885075

RESUMEN

The human cytomegalovirus (HCMV) virion envelope contains a complex consisting of glycoproteins gH and gL plus proteins encoded by the UL128 locus (UL128L): pUL128, pUL130, and pUL131A. UL128L is necessary for efficient infection of myeloid, epithelial, and endothelial cells but limits replication in fibroblasts. Consequently, disrupting mutations in UL128L are rapidly selected when clinical isolates are cultured in fibroblasts. In contrast, bacterial artificial chromosome (BAC)-cloned strains TB40-BAC4, FIX, and TR do not contain overt disruptions in UL128L, yet no virus reconstituted from them has been reported to acquire mutations in UL128L in vitro. We performed BAC mutagenesis and reconstitution experiments to test the hypothesis that these strains contain subtle mutations in UL128L that were acquired during passage prior to BAC cloning. Compared to strain Merlin containing wild-type UL128L, all three strains produced higher yields of cell-free virus. Moreover, TB40-BAC4 and FIX spread cell to cell more rapidly than wild-type Merlin in fibroblasts but more slowly in epithelial cells. The differential growth properties of TB40-BAC4 and FIX (but not TR) were mapped to single-nucleotide substitutions in UL128L. The substitution in TB40-BAC4 reduced the splicing efficiency of UL128, and that in FIX resulted in an amino acid substitution in UL130. Introduction of these substitutions into Merlin dramatically increased yields of cell-free virus and increased cell-to-cell spread in fibroblasts but reduced the abundance of pUL128 in the virion and the efficiency of epithelial cell infection. These substitutions appear to represent mutations in UL128L that permit virus to be propagated in fibroblasts while retaining epithelial cell tropism.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Fibroblastos/virología , Glicoproteínas de Membrana/metabolismo , Epitelio Pigmentado de la Retina/virología , Proteínas del Envoltorio Viral/metabolismo , Western Blotting , Células Cultivadas , Cromosomas Artificiales Bacterianos/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/virología , Feto , Fibroblastos/metabolismo , Prepucio/metabolismo , Prepucio/virología , Variación Genética , Humanos , Masculino , Glicoproteínas de Membrana/genética , Mutagénesis , Mutación/genética , Plásmidos/genética , Epitelio Pigmentado de la Retina/metabolismo , Tropismo , Proteínas del Envoltorio Viral/genética , Virión/fisiología , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA