Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398849

RESUMEN

We propose a novel method for assessing metabolic flexibility (MF) through indirect calorimetry. A total of twenty healthy volunteers (10 females; 10 males) aged 45-65 were categorized into a Low-Intensity activity group (LI, 0-1 session of 1 h per week) and a High-Intensity activity group (HI, 5-6 sessions of 2 h per week). Volunteers underwent a stepwise exercise test on a cycle ergometer, connected to a calorimeter, to examine respiratory gas exchange to evaluate peak fatty acid Oxidation (PFO) and peak carbohydrate oxidation (PCO). Circulating peroxisome proliferator-activated receptor α (PPARα) biomarkers, docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratio and N-oleoylethanolamine (OEA), and the endocannabinoid- 2-arachidonoylglycerol (2-AG), were evaluated. We developed two MF parameters: the MF index (MFI), calculated by the product of PFO normalized per kg of fat-free mass (FFM) and the percentage of VO2max at PFO, and the peak energy substrates' oxidation (PESO), computed by summing the kilocalories from the PFO and PCO, normalized per kg FFM. The MFI and PESO were significantly different between the HI and LI groups, showing strong correlations with the circulating bioactive substances. Higher DHA/EPA ratio (p ≤ 0.05) and OEA (p ≤ 0.01), but lower 2-AG levels (p ≤ 0.01) were found in the HI group. These new parameters successfully established a functional link between MF and the balance of PPARα/endocannabinoid systems.


Asunto(s)
Endocannabinoides , PPAR alfa , Masculino , Persona de Mediana Edad , Femenino , Humanos , Calorimetría Indirecta , Oxidación-Reducción , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico
2.
Epilepsia Open ; 9(1): 432-438, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016924

RESUMEN

Neuromodulation by means of vagus nerve stimulation (VNS) therapy, reduces seizure frequency and improves quality of life in subjects with drug-resistant epilepsy (DRE), yet its molecular mechanism remains unclear. This study investigates the impact of chronic VNS on lipid bioactive metabolites and fatty acids (FA) in the plasma and red blood cells of seven subjects with DRE. By measuring expression levels of peroxisome proliferator-activated receptor α (PPARα) and sirtuin1 (SIRT1) genes-key regulators in energy and lipid metabolism-and lipid profiles before and after various stages of VNS, this study identifies potential mechanisms by which VNS may reduce seizure frequency. Blood samples collected before VNS device implantation, after acute VNS stimulus, and following gradual intensity increments up to therapeutic levels revealed that VNS increases SIRT1 and PPARα expression and erythrocyte concentrations of PPARα ligands. Additionally, we observe reduced de novo lipogenesis biomarkers in erythrocytes, indicating that VNS may influence systemic lipid and energy metabolism. Our findings suggest that VNS could enhance neuronal function by modulating energy metabolism, thus potentially reducing seizure frequency in subjects with DRE. Future research targeting SIRT1 and PPARα may provide innovative therapeutic strategies for managing DRE. Plain Language Summary: The exact mechanism of VNS is still unknown. This study investigated the effects of VNS Therapy on energetic metabolism, suggesting possible novel biomarkers for DRE subjects and neuromodulation therapies.


Asunto(s)
Epilepsia Refractaria , Estimulación del Nervio Vago , Humanos , Calidad de Vida , PPAR alfa , Sirtuina 1 , Epilepsia Refractaria/terapia , Convulsiones , Ácidos Grasos
3.
Nutrients ; 15(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38004155

RESUMEN

We investigated the influence of varying dietary polyunsaturated fatty acid (PUFA)/saturated fatty acids (SFA) ratios on insulin resistance (IR), fatty acid metabolism, N-acylethanolamine (NAE) bioactive metabolite levels, and mitochondrial function in lean and obese Zucker rats in a model designed to study obesity and IR from overnutrition. We provided diets with 7% fat (w/w), with either a low PUFA/SFA ratio of 0.48, predominantly comprising palmitic acid (PA), (diet-PA), or the standard AIN-93G diet with a high PUFA/SFA ratio of 3.66 (control, diet-C) over eight weeks. In obese rats on diet-PA versus diet-C, there were reductions in plasma triglycerides, cholesterol, glucose, insulin concentrations and improved muscle mitochondrial function, inflammatory markers and increased muscle N-oleoylethanolamine (OEA), a bioactive lipid that modulates lipid metabolism and metabolic flexibility. Elevated palmitic acid levels were found exclusively in obese rats, regardless of their diet, implying an endogenous production through de novo lipogenesis rather than from a dietary origin. In conclusion, a reduced dietary PUFA/SFA ratio positively influenced glucose and lipid metabolism without affecting long-term PA tissue concentrations. This likely occurs due to an increase in OEA biosynthesis, improving metabolic flexibility in obese rats. Our results hint at a pivotal role for balanced dietary PA in countering the effects of overnutrition-induced obesity.


Asunto(s)
Ácidos Grasos , Resistencia a la Insulina , Ratas , Animales , Ácidos Grasos/metabolismo , Ratas Zucker , Grasas de la Dieta/farmacología , Ácidos Grasos Insaturados/metabolismo , Obesidad/metabolismo , Dieta , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos , Glucosa , Ácidos Palmíticos
4.
Front Nutr ; 9: 834066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360687

RESUMEN

We evaluated whether maternal intake of conjugated linoleic acid (CLA) and docosahexaenoic acid (DHA) in the phospholipid (PL) form (CLA-DHA PL) affects maternal and fetal brain and liver fatty acids (FAs) profile and the biosynthesis of FA-derived bioactive lipid mediators N-acylethanolamines (NAEs) involved in several neurophysiological functions. We fed rat dams during the first 2/3 of their pregnancy a CLA-DHA PL diet containing PL-bound 0.5% CLA and 0.2% DHA. FA and NAE profiles were analyzed in maternal and fetal liver and brain by Liquid Chromatography diode array detector (LC-DAD) and MS/MS in line. We found that CLA and DHA crossed the placenta and were readily incorporated into the fetal liver and brain. CLA metabolites were also found abundantly in fetal tissues. Changes in the FA profile induced by the CLA-DHA PL diet influenced the biosynthesis of NAE derived from arachidonic acid (ARA; N-arachidonoylethanolamine, AEA) and from DHA (N-docosahexaenoylethanolamine, DHEA). The latter has been previously shown to promote synaptogenesis and neuritogenesis. The reduced tissue n6/n3 ratio was associated to a significant decrease of AEA levels in the fetal and maternal liver and an increase of DHEA in the fetal and maternal liver and in the fetal brain. Maternal dietary CLA-DHA PL by promptly modifying fetal brain FA metabolism, and thereby, increasing DHEA, might represent an effective nutritional strategy to promote neurite growth and synaptogenesis and protect the offspring from neurological and psychiatric disorders with neuroinflammatory and neurodegenerative basis during the critical prenatal period.

5.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35408995

RESUMEN

We have previously shown that bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R) is a model to study early hypoperfusion/reperfusion-induced changes in biomarkers of the tissue physiological response to oxidative stress and inflammation. Thus in this study, we investigate with immunochemical assays if a single dose of beta-caryophyllene (BCP), administered before the BCCAO/R, can modulate the TRPV1, BDNF, and trkB receptor in the brain cortex; the glial markers GFAP and Iba1 were also examined. Frontal and temporal-occipital cortical regions were analyzed in two groups of male rats, sham-operated and submitted to BCCAO/R. Six hours before surgery, one group was gavage fed a dose of BCP (40 mg/per rat in 300 µL of sunflower oil), the other was pre-treated with the vehicle alone. Western blot analysis showed that, in the frontal cortex of vehicle-treated rats, the BCCAO/R caused a TRPV1 decrease, an increment of trkB and GFAP, no change in BDNF and Iba1. The BCP treatment caused a decrease of BDNF and an increase of trkB levels in both sham and BCCAO/R conditions while inducing opposite changes in the case of TRPV1, whose levels became higher in BCCAO/R and lower in sham conditions. Present results highlight the role of BCP in modulating early events of the cerebral inflammation triggered by the BCCAO/R through the regulation of TRPV1 and the BDNF-trkB system.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Antiinflamatorios/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Inflamación/tratamiento farmacológico , Masculino , Sesquiterpenos Policíclicos , Ratas , Ratas Wistar , Receptor trkB , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Canales Catiónicos TRPV
6.
Front Nutr ; 9: 861664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399673

RESUMEN

Palmitic acid (PA) is ubiquitously present in dietary fat guaranteeing an average intake of about 20 g/d. The relative high requirement and relative content in the human body, which accounts for 20-30% of total fatty acids (FAs), is justified by its relevant nutritional role. In particular physiological conditions, such as in the fetal stage or in the developing brain, the respectively inefficient placental and brain blood-barrier transfer of PA strongly induces its endogenous biosynthesis from glucose via de novo lipogenesis (DNL) to secure a tight homeostatic control of PA tissue concentration required to exert its multiple physiological activities. However, pathophysiological conditions (insulin resistance) are characterized by a sustained DNL in the liver and aimed at preventing the excess accumulation of glucose, which result in increased tissue content of PA and disrupted homeostatic control of its tissue concentration. This leads to an overaccumulation of tissue PA, which results in dyslipidemia, increased ectopic fat accumulation, and inflammatory tone via toll-like receptor 4. Any change in dietary saturated FAs (SFAs) usually reflects a complementary change in polyunsaturated FA (PUFA) intake. Since PUFA particularly n-3 highly PUFA, suppress lipogenic gene expression, their reduction in intake rather than excess of dietary SFA may promote endogenous PA production via DNL. Thereby, the increase in tissue PA and its deleterious consequences from dysregulated DNL can be mistakenly attributed to dietary intake of PA.

7.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36614161

RESUMEN

Fenofibrate (FBR), an oral medication used to treat dyslipidemia, is a ligand of the peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor that regulates the expression of metabolic genes able to control lipid metabolism and food intake. PPARα natural ligands include fatty acids (FA) and FA derivatives such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), known to have anti-inflammatory and anorexigenic activities, respectively. We investigated changes in the FA profile and FA derivatives by HPLC and LC-MS in male C57BL/6J mice fed a standard diet with or without 0.2% fenofibrate (0.2% FBR) for 21 days. Induction of PPARα by 0.2% FBR reduced weight gain, food intake, feed efficiency, and liver lipids and induced a profound change in FA metabolism mediated by parallel enhanced mitochondrial and peroxisomal ß-oxidation. The former effects led to a steep reduction of essential FA, particularly 18:3n3, with a consequent decrease of the n3-highly unsaturated fatty acids (HUFA) score; the latter effect led to an increase of 16:1n7 and 18:1n9, suggesting enhanced hepatic de novo lipogenesis with increased levels of hepatic PEA and OEA, which may activate a positive feedback and further sustain reductions of body weight, hepatic lipids and feed efficiency.


Asunto(s)
Ácidos Grasos , Fenofibrato , PPAR alfa , Animales , Masculino , Ratones , Endocannabinoides/metabolismo , Ácidos Grasos/metabolismo , Fenofibrato/farmacología , Hígado/metabolismo , Ratones Endogámicos C57BL , PPAR alfa/agonistas
8.
Nutrients ; 13(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34959892

RESUMEN

Bariatric surger (BS) is characterized by lipid metabolic changes as a response to the massive release of non-esterified fatty acids (NEFA) from adipose depots. The study aimed at evaluating changes in polyunsaturated fatty acids (PUFA) metabolism and biosynthesis of the lipid mediators N-acylethanolamines (NAE), as indices of nuclear peroxisome proliferator-activated receptor (PPAR)-α activation. The observational study was performed on 35 subjects (27 female, 8 male) with obesity, undergoing bariatric surgery. We assessed plasma FA and NAE profiles by LC-MS/MS, clinical parameters and anthropometric measures before and 1 and 6 months after bariatric surgery. One month after bariatric surgery, as body weight and clinical parameters improved significantly, we found higher plasma levels of N-oleoylethanolamine, arachidonic and a 22:6-n3/20:5-n3 ratio as evidence of PPAR-α activation. These changes corresponded to higher circulating levels of NEFA and a steep reduction of the fat mass. After 6 months 22:6-n3/20:5-n3 remained elevated and fat mass was further reduced. Our data suggest that the massive release of NEFA from adipose tissue at 1-Post, possibly by inducing PPAR-α, may enhance FA metabolism contributing to fat depot reduction and improved metabolic parameters in the early stage. However, PUFA metabolic changes favor n6 PUFA biosynthesis, requiring a nutritional strategy aimed at reducing the n6/n3 PUFA ratio.


Asunto(s)
Cirugía Bariátrica , Ácidos Grasos Insaturados/metabolismo , Obesidad/metabolismo , PPAR alfa/metabolismo , Tejido Adiposo/metabolismo , Adulto , Ácido Araquidónico/metabolismo , Composición Corporal , Endocannabinoides/metabolismo , Etanolaminas/metabolismo , Femenino , Humanos , Masculino , Ácidos Oléicos/metabolismo , Periodo Posoperatorio
9.
Antioxidants (Basel) ; 10(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34829678

RESUMEN

The biological mechanisms linking nutrition and antioxidants content of the diet with cardiovascular protection are subject of intense investigation. It has been demonstrated that dietary supplementation with cow, donkey or human milk, characterized by distinct nutritional properties, triggers significant differences in the metabolic and inflammatory status through the modulation of hepatic and skeletal muscle mitochondrial functions. Cardiac mitochondria play a key role for energy-demanding heart functions, and their disfunctions is leading to pathologies. Indeed, an altered heart mitochondrial function and the consequent increased reactive oxygen species (ROS) production and inflammatory state, is linked to several cardiac diseases such as hypertension and heart failure. In this work it was investigated the impact of the milk consumption on heart mitochondrial functions, inflammation and oxidative stress. In addition, it was underlined the crosstalk between mitochondrial metabolic flexibility, lipid storage and redox status as control mechanisms for the maintenance of cardiovascular health.

10.
Nutrients ; 13(2)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33671938

RESUMEN

We investigated the influence of different dietary formulation of n-3 polyunsaturated fatty acids (PUFA) on rat tissue fatty acid (FA) incorporation and consequent modulation of their bioactive metabolite N-acylethanolamines (NAE). For 10 weeks, rats were fed diets with 12% of fat from milk + 4% soybean oil and 4% of oils with different n-3 PUFA species: soybean oil as control, linseed oil rich in α-linolenic (ALA), Buglossoides arvensis oil rich in ALA and stearidonic acid (SDA), fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), Nannochloropsis microalga oil rich in EPA or Schizochytrium microalga oil rich in DHA. FA and NAE profiles were determined in plasma, liver, brain and adipose tissues. Different dietary n-3 PUFA distinctively influenced tissue FA profiles and consequently NAE tissue concentrations. Interestingly, in visceral adipose tissue the levels of N-arachidonoylethanolamide (AEA) and N-docosahexaenoylethanolamide (DHEA), NAE derived from arachidonic acid (AA) and DHA, respectively, significantly correlated with NAE in plasma, and circulating DHEA levels were also correlated with those in liver and brain. Circulating NAE derived from stearic acid, stearoylethanolamide (SEA), palmitic acid and palmitoylethanolamide (PEA) correlated with their liver concentrations. Our data indicate that dietary n-3 PUFA are not all the same in terms of altering tissue FA and NAE concentrations. In addition, correlation analyses suggest that NAE levels in plasma may reflect their concentration in specific tissues. Given the receptor-mediated tissue specific metabolic role of each NAE, a personalized formulation of dietary n-3 PUFA might potentially produce tailored metabolic effects in different pathophysiological conditions.


Asunto(s)
Etanolaminas/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos/metabolismo , Alimentos Formulados/análisis , Tejido Adiposo/metabolismo , Animales , Encéfalo/metabolismo , Aceites de Pescado/farmacología , Hígado/metabolismo , Aceites de Plantas/farmacología , Plasma/química , Ratas
11.
Geroscience ; 43(4): 1783-1798, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33650014

RESUMEN

To evaluate whether a peculiar plasma profile of fatty acids and endocannabinoidome (eCBome)-related mediators may be associated to longevity, we assessed them in octogenarians (Old; n=42) living in the east-central mountain area of Sardinia, a High-Longevity Zone (HLZ), compared to sexagenarian (Young; n=21) subjects from the same area, and to Olds (n=22) from the Northern Sardinia indicated as Lower-Longevity Zone (LLZ). We found significant increases in conjugated linoleic acid (CLA) and heptadecanoic acid (17:0) levels in Old-HLZ with respect to younger subjects and Old-LLZ subjects. Young-HLZ subjects exhibited higher circulating levels of pentadecanoic acid (15:0) and retinol. Palmitoleic acid (POA) was elevated in both Young and Old subjects from the HLZ. eCBome profile showed a significantly increased plasma level of the two endocannabinoids, N-arachidonoyl-ethanolamine (AEA) and 2-arachidonoyl-glycerol (2-AG) in Old-HLZ subjects compared to Young-HLZ and Old-LLZ respectively. In addition, we found increased N-oleoyl-ethanolamine (OEA), 2-linoleoyl-glycerol (2-LG) and 2-oleoyl-glycerol (2-OG) levels in Old-HLZ group with respect to Young-HLZ (as for OEA an d 2-LG) and both the Old-LLZ and Young-HLZ for 2-OG. The endogenous metabolite of docosahexaenoic acid (DHA), N-docosahexaenoyl-ethanolamine (DHEA) was significantly increased in Old-HLZ subjects. In conclusion, our results suggest that in the HLZ area, Young and Old subjects exhibited a favourable, albeit distinctive, fatty acids and eCBome profile that may be indicative of a metabolic pattern potentially protective from adverse chronic conditions. These factors could point to a suitable physiological metabolic pattern that may counteract the adverse stimuli leading to age-related disorders such as neurodegenerative and metabolic diseases.


Asunto(s)
Ácidos Grasos , Longevidad , Anciano de 80 o más Años , Etanolamina , Etanolaminas , Humanos , Italia , Ácidos Oléicos
12.
Cells ; 9(4)2020 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-32235294

RESUMEN

Energy balance, mitochondrial dysfunction, obesity, and insulin resistance are disrupted by metabolic inflexibility while therapeutic interventions are associated with improved glucose/lipid metabolism in skeletal muscle. Conjugated linoleic acid mixture (CLA) exhibited anti-obesity and anti-diabetic effects; however, the modulatory ability of its isomers (cis9, trans11, C9; trans10, cis12, C10) on the metabolic flexibility in skeletal muscle remains to be demonstrated. Metabolic inflexibility was induced in rat by four weeks of feeding with a high-fat diet (HFD). At the end of this period, the beneficial effects of C9 or C10 on body lipid content, energy expenditure, pro-inflammatory cytokines, glucose metabolism, and mitochondrial efficiency were examined. Moreover, oxidative stress markers, fatty acids, palmitoyletanolamide (PEA), and oleyletanolamide (OEA) contents along with peroxisome proliferator-activated receptors-alpha (PPARα), AKT, and adenosine monophosphate-activated protein kinase (AMPK) expression were evaluated in skeletal muscle to investigate the underlying biochemical mechanisms. The presented results indicate that C9 intake reduced mitochondrial efficiency and oxidative stress and increased PEA and OEA levels more efficiently than C10 while the anti-inflammatory activity of C10, and its regulatory efficacy on glucose homeostasis are associated with modulation of the PPARα/AMPK/pAKT signaling pathway. Our results support the idea that the dissimilar efficacy of C9 and C10 against the HFD-induced metabolic inflexibility may be consequential to their ability to activate different molecular pathways.


Asunto(s)
Dieta Alta en Grasa , Suplementos Dietéticos , Conducta Alimentaria , Ácidos Linoleicos Conjugados/química , Ácidos Linoleicos Conjugados/farmacología , Músculo Esquelético/metabolismo , Sustancias Protectoras/farmacología , Adenilato Quinasa/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Homeostasis/efectos de los fármacos , Inflamación/patología , Isomerismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar
13.
Artículo en Inglés | MEDLINE | ID: mdl-31978675

RESUMEN

No data are available on whether a diet deficient of the essential fatty acids is able to modulate tissue levels of endocannabinoids and congeners. Male rats fed for 12 weeks a diet deficient of essential fatty acids, palmitic and oleic acids (EFAD), replaced with saturated fatty acids (SAFA), showed lowered n-3 and n-6 PUFAs levels in plasma, liver and adipose tissue, with concomitant steep increase of oleic and mead acids, while in hypothalamus no changes in PUFA concentration were detected and only palmitoleic acid was found increased. We found a reduction of anandamide and palmitoylethanolamide in liver and brain, while oleoylethanolamide increased significantly in liver and adipose tissue, associated to a 50 % body weight decrease. Changes in N-acylethanolamide profile may contribute to body weight reduction distinctive of EFA deficiency.


Asunto(s)
Ácidos Araquidónicos/análisis , Endocannabinoides/análisis , Etanolaminas/análisis , Ácidos Grasos Esenciales/deficiencia , Ácidos Grasos/administración & dosificación , Ácidos Oléicos/análisis , Ácidos Palmíticos/análisis , Alcamidas Poliinsaturadas/análisis , Tejido Adiposo/química , Amidas , Animales , Peso Corporal/efectos de los fármacos , Química Encefálica , Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-6/sangre , Ácidos Grasos Omega-6/química , Hígado/química , Masculino , Ratas
14.
FASEB J ; 34(1): 350-364, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914699

RESUMEN

Peroxisome proliferator-activated receptor (PPAR)-α activation controls hepatic lipid homeostasis, stimulating fatty acid oxidation, and adapting the metabolic response to lipid overload and storage. Here, we investigate the effect of palmitoylethanolamide (PEA), an endogenous PPAR-α ligand, in counteracting hepatic metabolic inflexibility and mitochondrial dysfunction induced by high-fat diet (HFD) in mice. Long-term PEA administration (30 mg/kg/die per os) in HFD mice limited hepatic lipid accumulation, increased energy expenditure, and markedly reduced insulin resistance. In isolated liver mitochondria, we have demonstrated PEA capability to modulate mitochondrial oxidative capacity and energy efficiency, leading to the reduction of intracellular lipid accumulation and oxidative stress. Moreover, we have evaluated the effect of PEA on mitochondrial bioenergetics of palmitate-challenged HepG2 cells, using Seahorse analyzer. In vitro data showed that PEA recovered mitochondrial dysfunction and reduced lipid accumulation in insulin-resistant HepG2 cells, increasing fatty acid oxidation. Mechanistic studies showed that PEA effect on lipid metabolism was limited by AMP-activated protein kinase (AMPK) inhibition, providing evidence for a pivotal role of AMPK in PEA-induced adaptive metabolic setting. All these findings identify PEA as a modulator of hepatic lipid and glucose homeostasis, limiting metabolic inflexibility induced by nutrient overload.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Etanolaminas/farmacología , Hígado/metabolismo , Mitocondrias/metabolismo , Obesidad/tratamiento farmacológico , Ácidos Palmíticos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Amidas , Animales , Células Hep G2 , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , PPAR alfa/metabolismo
15.
Front Pharmacol ; 11: 587140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33505308

RESUMEN

Fatty acids play a crucial role in the brain as specific receptor ligands and as precursors of bioactive metabolites. Conjugated linoleic acid (CLA), a group of positional and geometric isomers of linoleic acid (LA, 18:2 n-6) present in meat and dairy products of ruminants and synthesized endogenously in non-ruminants and humans, has been shown to possess different nutritional properties associated with health benefits. Its ability to bind to peroxisome proliferator-activated receptor (PPAR) α, a nuclear receptor key regulator of fatty acid metabolism and inflammatory responses, partly mediates these beneficial effects. CLA is incorporated and metabolized into brain tissue where induces the biosynthesis of endogenous PPARα ligands palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), likely through a positive feedback mechanism where PPARα activation sustains its own cellular effects through ligand biosynthesis. In addition to PPARα, PEA and OEA may as well bind to other receptors such as TRPV1, further extending CLA own anti-neuroinflammatory actions. Future studies are needed to investigate whether dietary CLA may exert anti-inflammatory activity, particularly in the setting of neurodegenerative diseases and neuropsychiatric disorders with a neuroinflammatory basis.

16.
Biomolecules ; 9(11)2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752405

RESUMEN

Ruminant fats are characterized by different levels of conjugated linoleic acid (CLA) and α-linolenic acid (18:3n-3, ALA), according to animal diet. Tissue fatty acids and their N-acylethanolamides were analyzed in male obese Zucker rats fed diets containing lamb meat fat with different fatty acid profiles: (A) enriched in CLA; (B) enriched in ALA and low in CLA; (C) low in ALA and CLA; and one containing a mixture of olive and corn oils: (D) high in linoleic acid (18:2n-6, LA) and ALA, in order to evaluate early lipid metabolism markers. No changes in body and liver weights were observed. CLA and ALA were incorporated into most tissues, mirroring the dietary content; eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased according to dietary ALA, which was strongly influenced by CLA. The n-3 highly-unsaturated fatty acid (HUFA) score, biomarker of the n-3/n-6 fatty acid ratio, was increased in tissues of rats fed animal fats high in CLA and/or ALA compared to those fed vegetable fat. DHA and CLA were associated with a significant increase in oleoylethanolamide and decrease in anandamide in subcutaneous fat. The results showed that meat fat nutritional values are strongly influenced by their CLA and ALA contents, modulating the tissue n-3 HUFA score.


Asunto(s)
Alimentación Animal , Grasas de la Dieta/farmacología , Ácidos Grasos Omega-3/metabolismo , Obesidad/metabolismo , Carne Roja , Animales , Ácidos Linoleicos Conjugados/metabolismo , Masculino , Ratas , Ratas Zucker
17.
Nutr Neurosci ; 22(3): 207-214, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28847225

RESUMEN

OBJECTIVES: Conjugated linoleic acid (CLA) isomers have been shown to possess anti-inflammatory activity in the central nervous system. In this study, we aimed to evaluate whether modulation of the fatty acid profile by the CLA isomers c9,t11 or t10,c12CLA was associated with changes in the expression of pro-inflammatory molecules in human astrocytes. METHODS: Cultured astrocytes were treated for 6 days with 100 µM fatty acids (c9,t11CLA or t10,c12CLA or oleic acid). Following the treatment, the fatty acid profile of the cell and pro-inflammatory molecule expression were assessed. RESULTS: Only the t10,c12CLA isomer induced a significant decrease in arachidonic acid and increased the ratio of docosahexaenoic acid/eicosapentaenoic acid, which constitutes indirect evidence of peroxisome proliferator-activated receptor alpha activation. Inhibition of tumour necrosis factor-α, interleukin-1ß, and RANTES expression was observed in astrocytes treated with c9,t11CLA and t10,c12CLA. DISCUSSION: Current data demonstrate that CLA isomers, particularly t10,c12, may affect neuroinflammation by reducing the pro-inflammatory molecules in cultured astrocytes, suggesting a potential nutritional role of CLA isomers in modulating the astrocyte inflammatory response.


Asunto(s)
Antiinflamatorios/administración & dosificación , Astrocitos/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ácidos Linoleicos Conjugados/administración & dosificación , Biomarcadores/metabolismo , Células Cultivadas , Regulación hacia Abajo , Ácidos Grasos/administración & dosificación , Ácidos Grasos/metabolismo , Humanos , ARN Mensajero/metabolismo
18.
Int J Mol Sci ; 19(6)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891784

RESUMEN

n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids­EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.


Asunto(s)
Queso/análisis , Dieta , Ácidos Grasos Omega-3/sangre , Ácidos Linoleicos Conjugados/administración & dosificación , Adulto , Femenino , Humanos , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo
19.
Lipids Health Dis ; 17(1): 23, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402275

RESUMEN

BACKGROUND: The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) has been shown to stimulate early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The aim of the present study is to probe the possibility to prevent the molecular changes induced by the BCCAO/R with dietary natural compounds known to possess anti-inflammatory activity, such as the phytocannabinoid beta-caryophyllene (BCP). METHODS: Two groups of adult Wistar rats were used, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half of the rats were gavage-fed with a single dose of BCP (40 mg/per rat in 300 µl of sunflower oil as vehicle), while the second half were pre-treated with the vehicle alone. HPLC, Western Blot and immunohistochemistry were used to analyze cerebral cortex and plasma. RESULTS: After BCCAO/R, BCP prevented the increase of lipoperoxides occurring in the vehicle-treated rats in both cerebral cortex and plasma. In the frontal cortex, BCP further prevented activation of the endocannabinoid system (ECS), spared the docosahexaenoic acid (DHA), appeared to prevent the increase of cyclooxygenase-2 and increased the peroxisome-proliferator activated receptor-alpha (PPAR-alpha) protein levels, while, in plasma, BCP induced the reduction of arachidonoylethanolamide (AEA) levels as compared to vehicle-treated rats. CONCLUSIONS: Collectively, the pre-treatment with BCP, likely acting as agonist for CB2 and PPAR-alpha receptors, modulates in a beneficial way the ECS activation and the lipoperoxidation, taken as indicative of oxidative stress. Furthermore, our results support the evidence that BCP may be used as a dietary supplement to control the physiological response to the hypoperfusion/reperfusion-induced oxidative stress.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Endocannabinoides/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Sesquiterpenos/administración & dosificación , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Enfermedades de las Arterias Carótidas/tratamiento farmacológico , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Arteria Carótida Común/metabolismo , Arteria Carótida Común/patología , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/patología , Hipocampo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Estrés Oxidativo/efectos de los fármacos , Sesquiterpenos Policíclicos , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
20.
Int J Mol Sci ; 19(2)2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385102

RESUMEN

This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT) in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R) and to investigate RVT's ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle), while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1) and 2 (CB2), and peroxisome-proliferator-activated-receptor (PPAR)-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.


Asunto(s)
Enfermedades de las Arterias Carótidas , Lóbulo Frontal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptores de Cannabinoides/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Estilbenos/farmacología , Animales , Arteriopatías Oclusivas , Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica , Masculino , Ratas , Ratas Wistar , Receptores de Cannabinoides/genética , Daño por Reperfusión/metabolismo , Resveratrol , Estilbenos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...