Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurotrauma Rep ; 5(1): 749-759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184177

RESUMEN

Central autonomic and endocrine dysfunctions following traumatic brain injury (TBI) are believed to involve the hypothalamus; however, underlying mechanisms are unknown. Although chronic deficits might be caused by irreversible tissue damage, various neuroendocrine and autonomic symptoms are only observed transiently, suggesting they might result from a temporary alteration in the activity of hypothalamic neurons. We therefore examined if a mouse model of mild TBI could induce reversible autonomic phenotypes and cause acute changes in c-Fos expression within corresponding regions of the hypothalamus. Adult C57Bl/6 male mice were lightly anesthetized with isoflurane and subjected to TBI by lateral head impact using a Gothenburg impactor. Mice treated the same way, but without the head impact served as controls (shams). We monitored body weight and core body temperature by infrared thermography and performed immunohistochemistry against c-Fos in various regions of the hypothalamus. We determined that a projectile velocity of 9 m/s significantly delayed recovery from the anesthesia without inducing skull fractures and signs of discomfort disappeared within 3 h, as assessed by grimace scale. Compared with shams, TBI mice displayed a rapid decrease in core body temperature which resolved within 48 h. Daily body weight gain was also significantly lower in TBI mice on the day following injury but recovered thereafter. c-Fos analysis revealed a significantly higher density of c-Fos-positive cells in the paraventricular nucleus and a significantly lower density in the median preoptic nucleus and medial preoptic area. We conclude that mild TBI induced by a single lateral head impact in mice at 9 m/s produces acute and reversible symptoms associated with hypothalamic dysfunction accompanied by significant changes in c-Fos expression within relevant areas of the hypothalamus. These findings support the hypothesis that a temporary alteration of neuronal activity may underlie the expression of reversible central autonomic and neuroendocrine symptoms.

2.
J Neuroendocrinol ; 35(9): e13273, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37132408

RESUMEN

The suprachiasmatic nucleus (SCN) of the hypothalamus serves as the master circadian clock in mammals. Most SCN neurons express the inhibitory neurotransmitter GABA (gamma amino butyric acid) along with a peptide cotransmitter. Notably, the neuropeptides vasopressin (VP) and vasoactive intestinal peptide (VIP) define two prominent clusters within the SCN: those located in the ventral core (VIP) and those forming the dorsomedial "shell" of the nucleus (VP). Axons emerging from VP neurons in the shell are thought to mediate much of the SCN's output to other brain regions as well as VP release into the cerebrospinal fluid (CSF). Previous work has shown that VP release by SCN neurons is activity dependent and SCN VP neurons fire action potentials at a higher rate during the light phase. Accordingly, CSF VP levels are higher during daytime. Interestingly, the amplitude of the CSF VP rhythm is greater in males than females, suggesting the existence of sex differences in the electrical activity of SCN VP neurons. Here we investigated this hypothesis by performing cell-attached recordings from 1070 SCN VP neurons across the entire circadian cycle in both sexes of transgenic rats that express green fluorescent protein (GFP) driven by the VP gene promoter. Using an immunocytochemical approach we confirmed that >60% of SCN VP neurons display visible GFP. Recordings in acute coronal slices revealed that VP neurons display a striking circadian pattern of action potential firing, but the characteristics of this activity cycle differ in males and females. Specifically, neurons in males reached a significantly higher peak firing frequency during subjective daytime compared to females and the acrophase occurred ~1 h earlier in females. Peak firing rates in females were not significantly different at various phases of the estrous cycle.


Asunto(s)
Neuronas del Núcleo Supraquiasmático , Ratas , Femenino , Masculino , Animales , Neuronas del Núcleo Supraquiasmático/metabolismo , Potenciales de Acción/fisiología , Caracteres Sexuales , Neuronas/metabolismo , Núcleo Supraquiasmático/metabolismo , Vasopresinas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Ritmo Circadiano/fisiología , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA