Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139868

RESUMEN

BACKGROUND: Advancements in nanoscience have led to a profound paradigm shift in the therapeutic applications of medicinally important natural drugs. The goal of this research is to develop a nano-natural product for efficient cancer treatment. METHODS AND RESULTS: For this purpose, mesoporous silica nanoparticles (MSNPs) were formulated, characterized, and loaded with caffeine to develop a targeted drug delivery system, i.e., caffeine-coated nanoparticles (CcNPs). In silico docking studies were conducted to examine the binding efficiency of the CcNPs with different apoptotic targets followed by in vitro and in vivo bioassays in respective animal models. Caffeine, administered both as a free drug and in nanomedicine form, along with doxorubicin, was delivered intravenously to a benzene-induced AML model. The anti-leukemic potential was assessed through hematological profiling, enzymatic biomarker analysis, and RT-PCR examination of genetic alterations in leukemia markers. Docking studies show strong inter-molecular interactions between CcNPs and apoptotic markers. In vitro analysis exhibits statistically significant antioxidant activity, whereas in vivo analysis exhibits normalization of the genetic expression of leukemia biomarkers STMN1 and S1009A, accompanied by the restoration of the hematological and morphological traits of leukemic blood cells in nanomedicine-treated rats. Likewise, a substantial improvement in hepatic and renal biomarkers is also observed. In addition to these findings, the nanomedicine successfully normalizes the elevated expression of GAPDH and mTOR induced by exposure to benzene. Further, the nanomedicine downregulates pro-survival components of the NF-kappa B pathway and upregulated P53 expression. Additionally, in the TRAIL pathway, it enhances the expression of pro-apoptotic players TRAIL and DR5 and downregulates the anti-apoptotic protein cFLIP. CONCLUSIONS: Our data suggest that MSNPs loaded with caffeine, i.e., CcNP/nanomedicine, can potentially inhibit transformed cell proliferation and induce pro-apoptotic TRAIL machinery to counter benzene-induced leukemia. These results render our nanomedicine as a potentially excellent therapeutic agent against AML.

2.
Exp Biol Med (Maywood) ; 248(17): 1507-1517, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37688505

RESUMEN

Breast cancer (BC) continues to be the most common cancer in the women worldwide. Since estrogen receptor (ER)-positive BC accounts for the majority of newly diagnosed cases, endocrine therapy is advised to utilize either tamoxifen (Tam) or aromatase inhibitors. The use of Tam as a monotherapy or in conjunction with an aromatase inhibitor following two or three years of endocrine therapy has long been recommended. When used adjuvantly, Tam medication reduces BC mortality and relapses, while it extends survival times in metastatic BC when used in conjunction with other treatments. Unfortunately, the efficiency of Tam varies considerably. This study was conducted to explore the influence of genetic polymorphisms in CYP2C19 gene on Tam's pharmacogenetics and pharmacokinetics in estrogen-positive BC patients. Data from healthy, unrelated individuals (n = 410; control group) and ER-positive BC patients (n = 430) receiving 20 mg of Tam per day were recruited. Steady-state plasma concentrations of Tam and its three metabolites were quantified using the high-performance liquid chromatography in the patients. The CYP2C19 polymorphisms were genotyped using an Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR) approach. More than 65% of healthy individuals were extensive metabolizers (*1/*1) for CYP2C19, whereas more than 70% of ER-positive BC patients were rapid and ultrarapid metabolizers (*1/17*, *17/17*). The polymorphism CYP2C19*17 is significantly associated with higher 4-hydroxytamoxifen (4-OH-Tam). Patients with the *17/*17 genotype exhibited 1- to 1.5-fold higher 4-OH-Tam, which was also high in patients with the *1/*2 and *2/*2 genotypes.


Asunto(s)
Neoplasias de la Mama , Citocromo P-450 CYP2C19 , Tamoxifeno , Femenino , Humanos , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Estrógenos , Pakistán , Tamoxifeno/uso terapéutico
3.
Arch Biochem Biophys ; 747: 109763, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739116

RESUMEN

OBJECTIVE: Cardiac hypertrophy is a condition of abnormal cardiomyocyte enlargement accompanied by ventricular wall thickening. The study aims to investigate the role of miR-15a-5p in the regulation of mitofusin-2 (MFN-2) and to explore the cardioprotective effect of terpolymers ES-37 and L-37. METHODS: In this study, the Sprague Dawley rats' cardiac hypertrophic model was established by administering 5 mg/kg Isoproterenol subcutaneously every other day for 14 days. As treatment rats received NAC (50 mg/kg), NAC treatment (50 mg/kg NAC + 5 mg/kg ISO), ES-37 (1 mg/kg) and ES-37 treatment (1 mg/kg ES-37+5 mg/kg ISO), L-37 (1 mg/kg) and L-37 treatment (1 mg/kg L-37+5 mg/kg ISO). subcutaneously every other day for 14 days. NAC, ES 37 and L-37 were given after 1 h of Isoproterenol administration in treatment groups. Cardiac hypertrophy was confirmed through morphological and histological analysis. For estimation of oxidative stress profiling, ROS and TBARS and antioxidative profiling superoxide dismutase (SOD), Catalase, and Glutathione (GSH) levels were checked. Triglyceride, cholesterol, alanine transaminase (ALT), and aspartate transaminase (AST) were performed to evaluate levels of lipid profiling and liver profiling. Molecular expression analysis was checked through real-time PCR, and western blotting both at the transcriptional and translational levels. Molecular docking studies were performed to study the interactions and modes of binding between the synthetic polymers with three proteins (Mitofusin-2, DRP-1 and PUMA). All the studies were carried out using the AutoDock Vina software and the protein-ligand complexes were visualized in Biovia Discovery Studio. Cardiac hypertrophy was confirmed by the relative changes in the cellular structure of the heart by histopathological examination and physiological changes by estimating organ weights. Biochemical profiling results depict elevated oxidative and lipid profiles signify myocardial damage. N-acetyl cysteine (NAC), ES-37, and L-37 overcome the cardiac hypertrophic responses through attenuating oxidative stress and enhancing the antioxidative signaling mechanism. miR-15a-5p was identified as hypertrophic microRNA directly regulating the expression of Mitofusin-2 (MFN-2). Significantly increased expression of miR-15a-5p, Dynamin related protein 1 (Drp1), and P53 upregulated modulator of apoptosis (PUMA), was observed in the disease group, whereas MFN-2 expression was observed downregulated. N-acetyl cysteine (NAC), ES-37, and L-37 showed increased expression of antiapoptotic maker MFN-2 and decreased expression of miR-15a-5p, Drp1, and PUMA in treatment groups suggesting their cardioprotective role in attenuation of cardiac hypertrophy. An analysis of the docking results shows that ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. CONCLUSION: The physiochemical properties of ES-37 and L-37 predicted it as a good drug-like molecule and its mechanism of action is predictably through inhibition of ROS. Molecular docking results shows that the polymer ES-37 has greater binding affinity with the target proteins compared to L-37, with the highest binding values reported for MFN-2. Thus, the study validates the role and targeting of miR-15a-5p and MFN-2 in cardiac hypertrophy as well as the therapeutic potential of NAC, ES-37, and L-37 in overcoming oxidative stress and myocardial damage.

4.
J Cancer Res Clin Oncol ; 149(16): 14565-14575, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37580403

RESUMEN

BACKGROUND: Breast cancer is an abnormal division of breast cells. Bisphenol A (BPA), an environmental toxicant, is identified as an emerging risk factor for breast cancer development. However, to the best of our knowledge, no previous study has investigated the BPA levels in breast cancer patients in Pakistan. The present study sought to explore the role of BPA in tumor growth among the Pakistani population. METHODS: The levels of BPA were analyzed in the serum samples of breast cancer patients and controls by using HPLC. To elucidate the role of BPA to initiate tumorigenic events in breast tissue different biochemical assays along with expression analysis of tumor markers were performed. RESULTS: The level of BPA in the serum samples of breast cancer patients was significantly higher than control. Histological analysis of breast cancer tissue samples revealed distinct subtypes of tumor, such as ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). There was a significant increase in ROS level while a significant decrease in the levels of superoxide dismutase (SOD) and catalase (CAT) enzymes in malignant breast tissue samples as compared to control tissue samples. We found upregulated expression of p53, ZEB1 and WNT1 genes at mRNA level in malignant breast tissue samples by 17 folds, 328 folds and 35 folds, respectively. p53 protein expression in malignant breast tissue samples was also enhanced at the translational level. CONCLUSION: Current findings suggest a relationship between BPA and the progression of breast cancer among the Pakistani population.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Humanos , Femenino , Neoplasias de la Mama/patología , Proteína p53 Supresora de Tumor/metabolismo , Estudios de Cohortes , Carcinoma Intraductal no Infiltrante/patología , Carcinoma Ductal de Mama/patología
5.
Oxid Med Cell Longev ; 2022: 5029853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35535358

RESUMEN

Background: Valvular heart disease (VHD) is a major contributor to loss of physical function and longevity. Oxidative stress is one of the key causative factors involved in heart disease including VHD. Here, we aimed to illuminate the role and relation of oxidative stress to the VHD risk markers in the human population. Materials and Methods: 150 VHD patients and 103 healthy individuals as control were selected for the study and were divided into three groups: the aortic valve, mitral valve, and combined disease based on valvular calcification. Results: Our results demonstrated enhanced oxidative stress in the VHD condition, as we found elevated levels of reactive oxygen species (ROS) at the serum, supported by an increased level of thiobarbituric acid reactive substances (TBARs) in the cardiac valvular tissues of the VHD patients. In contrast, we experienced declined antioxidants including Super Oxide Dismutase (SOD), catalase (CAT), and peroxidase (POD) activities. Concurrently, increasing levels of C-reactive protein (CRP), high-sensitivity cardiac troponin I (hs-cTnI), and high-sensitivity cardiac troponin T (hs-cTnT) were detected in the aortic, mitral, and combined disease condition, suggesting a key association of oxidative stress to VHD conditions. Furthermore, regression analysis validated a key association between the impairment of the redox system (ROS and antioxidant enzyme activities) and VHD condition. Conclusion: Taken together, dysregulated oxidative stress contributes to the progression of VHD via positively correlating with CRP, hs-TnI, and hs-TnT level.


Asunto(s)
Proteína C-Reactiva , Enfermedades de las Válvulas Cardíacas , Humanos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Troponina
6.
Mol Biol Rep ; 49(7): 6495-6507, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35579734

RESUMEN

BACKGROUND: Recent discoveries in cancer therapeutics have proven combination therapies more effective than individual drugs. This study describes the efficacy of the combination of Cinnamomum zeylanicum and doxorubicin against benzene-induced leukemia. METHODS AND RESULTS: Brine shrimp assay was used to assess the cytotoxicity of C. zeylanicum, doxorubicin and their combination. After AML induction in Sprague Dawley rats, the same drugs were given to rat groups. Changes in organ weight, haematological profile, and hepatic enzymes were determined. Real-time PCR was used to elucidate the effect on the expression of STMN1, GAPDH, P53 and various TRAIL and NF-kappaB components. C. zeylanicum reduced the cytotoxicity of doxorubicin. The combination treatment showed better anti-leukemic results than any of the individual drugs as evident from STMN1 expression (p < 0.001). It was particularly effective in reducing total white blood cell counts and recovering lymphocytes, monocytes and eosinophils along with hepatic enzymes ALT and AST (p < 0.001). All doses recovered relative organ weights and improved blood parameters. The combination therapy was particularly effective in inducing apoptosis, inhibition of proliferation marker GAPDH (p < 0.001) and NF-kappaB pathway components Rel-A (p < 0.001) and Rel-B (p < 0.01). Expressions of TRAIL components c-FLIP (p < 0.001), TRAIL ligand (p < 0.001) and caspase 8 (p < 0.01) were also altered. CONCLUSION: Cinnamomum zeylanicum in combination with doxorubicin helps to counter benzene-induced cellular and hepatic toxicity and improves haematological profile. The anti-leukemic effects are potentially due to inhibition of GAPDH and NF-kappa B pathway, and through regulation of TRAIL pathway. Our data suggests the use of C. zeylanicum with doxorubicin to improve anti-leukemic therapeutic regimes.


Asunto(s)
Leucemia , Aceites Volátiles , Animales , Apoptosis , Benceno/farmacología , Cinnamomum zeylanicum/metabolismo , Doxorrubicina/farmacología , Leucemia/tratamiento farmacológico , FN-kappa B/metabolismo , Aceites Volátiles/farmacología , Ratas , Ratas Sprague-Dawley , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
7.
Front Neurosci ; 16: 779681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392411

RESUMEN

Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Currently available antiepileptic drugs have severe side effects and do not offer complete cure. Herbal remedies have been used for centuries to treat many neurodegenerative disorders. Otostegia limbata L. belongs to the largest and medicinally important family Lamiaceae and is distributed in hilly areas of Pakistan. This study was designed to assess the antioxidant, anti-inflammatory, and anticonvulsant potential of O. limbata. The methanolic extract showed significant antioxidant activity assessed by (1,1-diphenyl 2-picrylhydrazyl) free-radical scavenging assay, nitric oxide scavenging, and iron chelation antioxidant assays. The methanolic extract was evaluated for its anticonvulsant effect, employing the pentylenetetrazole (PTZ)-induced mice model of epilepsy. Three different doses of O. limbata (100, 200, and 300 mg/kg) were administered orally 30 min before PTZ [50 mg/kg, intraperitoneal (i.p.)] injection, while diazepam was used as a positive control. The extract at 300 mg/kg significantly decreased the duration and increased the latency of the PTZ-induced seizures. The expression of inflammatory cytokines tumor necrosis factor α (p-TNF-α) and phosphorylated transcription factor nuclear factor kappa B (p-NF-κB), in the cortex and hippocampus of the brains of treated mice were analyzed through enzyme-linked immunosorbent assay and western blot analysis. The morphological changes and number of surviving neurons were recorded through hematoxylin and eosin staining. The seizure score and survival rate of the treated group showed considerable differences as compared to the PTZ group. TNF-α and p-NF-K b expression were downregulated as compared to the PTZ group. The anticonvulsant effect may be the outcome of the antioxidant potential and high levels of phenols and flavonoids detected in the methanolic plant extract through Fourier transform infrared spectrophotometer and gas chromatography-mass spectrometry analysis.

8.
Molecules ; 26(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885867

RESUMEN

Metabolic disorders often lead to cardiac complications. Metabolic deregulations during diabetic conditions are linked to mitochondrial dysfunctions, which are the key contributing factors in cardiac hypertrophy. However, the underlying mechanisms involved in diabetes-induced cardiac hypertrophy are poorly understood. In the current study, we initially established a diabetic rat model by alloxan-administration, which was validated by peripheral glucose measurement. Diabetic rats displayed myocardial stiffness and fibrosis, changes in heart weight/body weight, heart weight/tibia length ratios, and enhanced size of myocytes, which altogether demonstrated the establishment of diabetic cardiac hypertrophy (DCH). Furthermore, we examined the expression of genes associated with mitochondrial signaling impairment. Our data show that the expression of PGC-1α, cytochrome c, MFN-2, and Drp-1 was deregulated. Mitochondrial-signaling impairment was further validated by redox-system dysregulation, which showed a significant increase in ROS and thiobarbituric acid reactive substances, both in serum and heart tissue, whereas the superoxide dismutase, catalase, and glutathione levels were decreased. Additionally, the expression levels of pro-apoptotic gene PUMA and stress marker GATA-4 genes were elevated, whereas ARC, PPARα, and Bcl-2 expression levels were decreased in the heart tissues of diabetic rats. Importantly, these alloxan-induced impairments were rescued by N-acetyl cysteine, ascorbic acid, and selenium treatment. This was demonstrated by the amelioration of myocardial stiffness, fibrosis, mitochondrial gene expression, lipid profile, restoration of myocyte size, reduced oxidative stress, and the activation of enzymes associated with antioxidant activities. Altogether, these data indicate that the improvement of mitochondrial dysfunction by protective agents such as N-acetyl cysteine, selenium, and ascorbic acid could rescue diabetes-associated cardiac complications, including DCH.


Asunto(s)
Acetilcisteína/uso terapéutico , Ácido Ascórbico/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Mitocondrias Cardíacas/metabolismo , Selenio/uso terapéutico , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Biomarcadores/sangre , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Calcio/sangre , Cardiomegalia/sangre , Cardiomegalia/complicaciones , Cardiomegalia/patología , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Citocromos c/metabolismo , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/complicaciones , Cardiomiopatías Diabéticas/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Factor de Transcripción GATA4/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Lípidos/sangre , Mitocondrias Cardíacas/efectos de los fármacos , Miocardio/patología , Oxidación-Reducción , Estrés Oxidativo , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Selenio/farmacología
9.
Plant Foods Hum Nutr ; 76(4): 501-506, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34716886

RESUMEN

Diabetic kidney disease is one of the most common microvascular complications of diabetes mellitus with consequences of diabetic nephropathy. Here we amined to evaluate the nephroprotective potential of methanolic Mentha longifolia (MML) against serotonin-induced hypoglycemia allied toxicity in the rat model of diabetes. Diabetes was induced in rats via alloxan administration and validated by blood glucose level measurement. After that, the animals were treated with serotonin and methanolic extract of Mentha longifolia. Surprisingly, serotonin treatment significantly reduced the glucose levels to hypoglycemic conditions, accompanied by impaired redox defense system, abnormal kidney histopathology, dyslipidemia, and altered level of liver toxicity markers. Interestingly these changes were rescued by the methanolic extract of M. longifolia. The present study suggests that impaired serotonin levels during diabetic conditions may accelerate hypoglycemic allied free radical-dependent abnormalities; however, medicinal plants like M. longifolia can reduce these deleterious effects by scavenging free radicals and their associated toxicity.


Asunto(s)
Diabetes Mellitus , Hipoglucemia , Mentha , Animales , Glucemia , Hipoglucemia/inducido químicamente , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Ratas , Especies Reactivas de Oxígeno , Serotonina
10.
Environ Sci Pollut Res Int ; 28(14): 17789-17801, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33398767

RESUMEN

Bisphenol A (BPA), an endocrine disruptor, is widely used in the manufacture of different daily life products. Accumulating evidence supports the association between the increasing incidence of neurodegenerative diseases and the BPA level in the environment. In the present study, we aimed to evaluate the neuroprotective role of melatonin against BPA-induced mitochondrial dysfunction-mediated apoptosis in the brain. Herein, adult Sprague Dawley rats were administrated (subcutaneously) with BPA (100 µg/kg BW, 1 mg/kg BW, and 10 mg/kg BW) and melatonin (4 mg/kg BW) for 16 days. Our results showed BPA exposure significantly increased the oxidative stress as demonstrated by increased free radicals (ROS), TBARs level, disrupted cellular architecture, and decreased antioxidant enzymes including SOD, CAT, APX, POD, and GSH levels. Additionally, BPA treatment increased the expression of PUMA, p53, and Drp-1 resulting in apoptosis in the brain tissue of rats. However, melatonin treatment significantly attenuated BPA-induced toxic effects by scavenging ROS, boosting antioxidant enzyme activities, and interestingly enervated brain apoptosis by normalizing p53, PUMA, and Drp-1 expressions at both transcriptional and translational level. Moreover, the brain tissue histology also revealed the therapeutic potential of melatonin by normalizing the cellular architecture. Conclusively, our finding suggests that melatonin could alleviate oxidative stress and mitochondrial dysfunction-linked apoptosis, rendering its neuroprotective potential against BPA-induced toxicity.


Asunto(s)
Melatonina , Animales , Antioxidantes , Proteínas Reguladoras de la Apoptosis , Compuestos de Bencidrilo/toxicidad , Melatonina/farmacología , Estrés Oxidativo , Fenoles , Ratas , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/genética
11.
Acta Radiol ; 62(5): 603-609, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32571097

RESUMEN

BACKGROUND: Chronic valvular heart disease leads to systolic dysfunction and left atrial enlargement that ultimately results in heart failure. PURPOSE: To investigate prognostic importance of Echocardiography and plasma natriuretic peptide levels that increase as a compensatory response and can be used as predictive markers for cardiac hypertrophy. MATERIAL AND METHODS: The patients were divided into three groups: 51 with left ventricle hypertrophy due to aortic valve disease; 126 with left atrial enlargement due to mitral valve dysfunction; and 76 with both conditions. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) plasma levels were measured in all three respective groups showing dilated cardiomyopathy. RESULTS: The mean left ventricular end-diastolic dimension at 64.3 ± 1.6 mm (P < 0.00) and left atrial dimension at 58.3 ± 3.7 mm (P < 0.00) were significantly high. However, patients with both conditions showed significantly high values for left ventricular end-diastolic dimension (63.3 ± 3 mm, P < 0.00) and left atrial dimension (54.9 ± 4 mm, P < 0.00) when compared with controls. A significant positive correlation was found between plasma natriuretic peptides levels and dilated cardiomyopathy. The mean values of ANP were 173 ± 46.6 pg/mL (P < 0.00), 140.4 ± 42.4 pg/mL (P < 0.00), and 295.1 ± 67.5 pg/mL (P < 0.00), significantly high in all three respective disease groups. The levels of BNP were also significantly high at 189 ± 44.5 pg/mL (P < 0.00), 166.6 ± 36.6 pg/mL (P < 0.00), and 323 ± 69.1 pg/mL (P < 0.00) in the disease groups with left ventricular hypertrophy, left atrial enlargement, and the disease group showing both characteristics, respectively. CONCLUSION: Significant positive associations were found between left ventricle hypertrophy and left atrial enlargement with ANP and BNP.


Asunto(s)
Válvula Aórtica , Cardiomegalia/epidemiología , Cardiomegalia/etiología , Insuficiencia Cardíaca/etiología , Enfermedades de las Válvulas Cardíacas/complicaciones , Válvula Mitral , Adulto , Factor Natriurético Atrial/sangre , Biomarcadores/sangre , Cardiomegalia/sangre , Cardiomegalia/diagnóstico por imagen , Enfermedad Crónica , Ecocardiografía , Femenino , Atrios Cardíacos , Ventrículos Cardíacos , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo
12.
Mol Biol Rep ; 47(9): 6545-6559, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32770526

RESUMEN

Exposure to environmental toxicants such as Bisphenol A (BPA) has raised serious health issues globally particularly in developing countries. It is ubiquitously used in the manufacturing of canned food and feeding bottles. BPA generated reactive oxygen species can lead to several diseases including cardiotoxicity. However, the endpoints stimulated in BPA cardiotoxicity yet need to be investigated. The current study was aimed to investigate the underlying molecular pathways which may contribute in revealing the protective effects of Pistacia integerrima against BPA induced oxidative stress. The dose of 100 µg/kg BW of BPA, 200 mg/kg BW P. integerrima, and 4 mg/kg BW melatonin was administered to Sprague Dawley rats. Present results of western blotting and qRT-PCR showed the increased expression of p53, PUMA and Drp1, while downregulation of Ubc13 in heart tissues of BPA treated group whereas the levels were reversed upon treatment with P. integerrima. The role of BPA in heart tissue apoptosis was further confirmed by the increased level of P-p53, cytochrome C and disrupted cellular architecture whereas the P. integerrima has shown its ameliorative potential by mitigating the adverse effects of BPA. Moreover, the oxidant, antioxidant, lipid, and liver markers profile has also revealed the therapeutic potential of P. integerrima by maintaining the levels in the normal range. However, melatonin has also manifested the normalized expression of apoptotic markers, biochemical markers, and tissue architecture. Conclusively, the data suggest that P. integerrima may be a potential candidate for the treatment of BPA induced toxicity by neutralizing the oxidative stress through Ubc13/p53 pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenoles/toxicidad , Pistacia/química , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Compuestos de Bencidrilo/administración & dosificación , Glucemia/efectos de los fármacos , Citocromos c/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Femenino , Hipodermoclisis , Riñón/citología , Riñón/efectos de los fármacos , Riñón/patología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Melatonina/administración & dosificación , Melatonina/farmacología , Fenoles/administración & dosificación , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Tumores de Planta , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Enzimas Ubiquitina-Conjugadoras/genética , Regulación hacia Arriba
13.
Front Mol Neurosci ; 13: 96, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595452

RESUMEN

Physical or psychological stress can cause an immunologic imbalance that disturbs the central nervous system followed by neuroinflammation. The association between inflammation and depression has been widely studied in recent years, though the molecular mechanism is still largely unknown. Thus, targeting the signaling pathways that link stress to neuroinflammation might be a useful strategy against depression. The current study investigated the protective effect of melatonin against lipopolysaccharide (LPS)-induced neuroinflammation and depression. Our results showed that LPS treatment significantly induced depressive-like behavior in mice. Moreover, LPS-treatment enhanced oxidative stress, pro-inflammatory cytokines including TNFα, IL-6, and IL-1ß, NF-κB phosphorylation, and glial cell activation markers including GFAP and Iba-1 in the brain of mice. Melatonin treatment significantly abolished the effect of LPS, as indicated by improved depressive-like behaviors, reduced cytokines level, reduced oxidative stress, and normalized LPS-altered Sirt1, Nrf2, and HO-1 expression. However, the melatonin protective effects were reduced after luzindole administration. Collectively, it is concluded that melatonin receptor-dependently protects against LPS-induced depressive-like behaviors via counteracting LPS-induced neuroinflammation.

14.
J Pineal Res ; 69(2): e12667, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32375205

RESUMEN

Major depressive disorder (MDD) is a life-threatening illness characterized by mood changes and high rates of suicide. Although the role of neuroinflammation in MMD has been studied, the mechanistic interplay between antidepressants, neuroinflammation, and autophagy is yet to be investigated. The present study investigated the effect of melatonin on LPS-induced neuroinflammation, depression, and autophagy impairment. Our results showed that in mice, lipopolysaccharide (LPS) treatment induced depressive-like behaviors and caused autophagy impairment by dysregulating ATG genes. Moreover, LPS treatment significantly increased the levels of cytokines (TNFα, IL-1ß, IL-6), enhanced NF-ᴋB phosphorylation, caused glial (astrocytes and microglia) cell activation, dysregulated FOXO3a expression, increased the levels of redox signaling molecules such as ROS/TBARs, and altered expression of Nrf2, SOD2, and HO-1. Melatonin treatment significantly abolished the effects of LPS, as demonstrated by improved depressive-like behaviors, normalized autophagy-related gene expression, and reduced levels of cytokines. Further, we investigated the role of autophagy in LPS-induced depressive-like behavior and neuroinflammation using autophagy inhibitors 3-MA and Ly294002. Interestingly, inhibitor treatment significantly abolished and reversed the anti-depressive, pro-autophagy, and anti-inflammatory effects of melatonin. The present study concludes that the anti-depressive effects of melatonin in LPS-induced depression might be mediated via autophagy modulation through FOXO3a signaling.


Asunto(s)
Astrocitos/metabolismo , Trastorno Depresivo Mayor , Proteína Forkhead Box O3/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Melatonina/farmacología , Microglía/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Animales , Astrocitos/patología , Autofagia/efectos de los fármacos , Trastorno Depresivo Mayor/inducido químicamente , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/patología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Masculino , Ratones
15.
Adv Exp Med Biol ; 1229: 3-45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32285403

RESUMEN

Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , ARN no Traducido , Enfermedades Cardiovasculares/genética , Células Endoteliales , Humanos
16.
Adv Exp Med Biol ; 1229: 385-426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32285426

RESUMEN

Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.


Asunto(s)
Enfermedades Cardiovasculares , ARN no Traducido , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Humanos , MicroARNs , Neoplasias , Estudios Prospectivos
17.
Mater Sci Eng C Mater Biol Appl ; 108: 110456, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31924021

RESUMEN

Under different pathological conditions, high levels of reactive oxygen species (ROS) cause substantial damage to multiple organs. To counter these ROS levels in multiple organs, we have engineered highly potent novel terpolymers. We found that combination of FDA-approved polyethylene glycol, fumaric acid moieties and electroactive tetra(aniline) by varying the content of tetra(aniline) results into a novel drug composition with biologically active and tunable intrinsic antioxidant properties. To test the intrinsic antioxidative properties of these novel terpolymers, we used alloxan to induce diabetes in rats where ROS generation is known to be higher. The systemic administration of terpolymers to the diabetic rats showed strong electroactive antioxidant behavior which not only normalized ROS levels, but also improved the levels of enzymatic antioxidants including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). As a proof-of-principle, we here show TANI based novel drug composition of terpolymers with tunable intrinsic antioxidant properties in multiple organs.


Asunto(s)
Compuestos de Anilina , Antioxidantes , Diabetes Mellitus Experimental/tratamiento farmacológico , Compuestos de Anilina/síntesis química , Compuestos de Anilina/química , Compuestos de Anilina/farmacocinética , Compuestos de Anilina/farmacología , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Catalasa/sangre , Línea Celular , Diabetes Mellitus Experimental/sangre , Glutatión/sangre , Humanos , Masculino , Ratas , Especies Reactivas de Oxígeno , Superóxido Dismutasa/sangre
18.
Curr Pharm Des ; 25(34): 3681-3691, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31604407

RESUMEN

PURPOSE: Leukemia, one of the major cancers, affects a large proportion of people around the world. Better treatment options for leukemia are required due to a large number of side effects associated with current therapeutic regimens. In the present study, we sought to determine the pathway of triggering apoptosis of leukemic cells by Ocimum basilicum (O. basilicum) plant extract. MATERIALS/METHODS: Methanolic extract of the O. basilicum plant material was prepared. The crude extract was fractionated into several fractions through column chromatography using ethyl acetate and n-hexane as eluting solvents. Cell viability of leukemic cells was assessed via Cell titer GLO assay and apoptosis was measured through Annexin V/PI staining. Two apoptotic molecules JNK and caspases were analyzed through western blotting while pro-inflammatory cytokines TNFα, CCL2 and CXCL8 using qPCR. Fractions were characterized through LC-MS. RESULTS: The most potent with lowest IC50 values among the fractions were BF2 (2:8 n-hexane:ethyl acetate) and BF3 (3:7 n-hexane:ethyl acetate). Cytotoxicity was associated with apoptosis. Apoptosis was found caspasedependent and P-JNK activation was detected sustained. A significant increase in the level of TNF α and a decrease in the level of CXCL8 were observed in BF2 and BF3 treated cells. CONCLUSION: The fractions of O. basilicum extract were found to kill cells following JNK pathway activation. Excellent results were obtained with BF2 and BF3 probably due to predominant Epicatechin and Cinnamic acid derivatives in these fractions.


Asunto(s)
Apoptosis , Caspasa 3 , Leucemia , Sistema de Señalización de MAP Quinasas , Ocimum basilicum/química , Extractos Vegetales/farmacología , Línea Celular Tumoral , Humanos , Factor de Necrosis Tumoral alfa
19.
Pak J Med Sci ; 35(1): 183-188, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881420

RESUMEN

OBJECTIVE: To evaluate the concentration of N terminal proBNP (NT-proBNP) and partially the serum uric acid in the severe condition of aortic valve dysfunction for assessment of left ventricle hypertrophy. METHODS: The study was conducted in the signal transduction lab department of biochemistry Quaid-I-Azam University, Islamabad from September 2013 to February 2017. NT-proBNP and serum uric acid were measured in one hundred patients of aortic valve dysfunction. The patients were divided into three main groups: 1) Aortic stenosis, 2) Aortic regurgitation, and 3) Aortic stenosis with Aortic regurgitation. The results were compared between disease and controls groups. RESULTS: High level of plasma NT-proBNP was detected in all the three disease groups of aortic valve (stenosis, p<0.001), (regurgitation, p<0.001) and (stenosis with regurgitation, p<0.001). In addition, non-significantly increased level of serum uric acid was also observed in left ventricle hypertrophy in all the three respective disease groups of aortic valve. CONCLUSION: Increased secretion of NT-proBNP during cardiac remodeling can be related to the severity of left ventricle hypertrophy due to aortic valve abnormality in all the disease groups of severe stenosis, severe regurgitation, and combine disease condition of severe stenosis and severe regurgitation. However, non-significant increase in uric acid concentration is also identified which may be due to one of the factors involved in left ventricle hypertrophy in all the three disease groups of aortic valve. The interaction of uric acid with NT-proBNP during cardiac remolding due to aortic valve dysfunction is still not clear.

20.
Mol Biol Rep ; 46(3): 2657-2663, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30903575

RESUMEN

Osteoarthritis (OA) is a serious health concern globally and is recognized by degradation of articular cartilage, bone remodeling and synovial inflammation. Resistin is an adipokine that shown to be involved in inflammatory process associated with OA. Aim of the current study was to estimate the link of resistin gene polymorphisms (- 420 C>G, + 299 G>A) with genetic susceptibility of knee OA in a Pakistani population. 280 patients and 308 age and sex matched controls were recruited in this case-control study. Genotype and allele frequencies were evaluated by Polymerase chain reaction-Restriction Fragment Length Polymorphism. Resistin concentration was measured by immunoassay. A significant difference in allele and genotype frequency was observed for both study groups. Resistin - 420 mutant genotype was associated with an increased susceptibility to OA (p = 0.001). Similarly, resistin + 299 GA + AA genotypes showed a relation with an elevated risk of knee OA compared to GG genotype (p = 0.01). Moreover, the mutant alleles frequency was significantly high in patient group as compared to healthy individuals for both loci (p < 0.01). Resistin - 420/+ 299 alleles haplotype analysis demonstrated that mutant alleles were more prevalent in OA affected individuals compared to healthy subjects (p < 0.05). The serum resistin levels were not remarkably different in patient vs. control group (p = 0.9). Further, the circulating resistin level was not found to be influenced by - 420G and + 299A alleles and non significant differences were observed in resistin concentration in mutant vs. wild type genotypes for both SNPs (p > 0.05). Our data suggest an association between investigated resistin genetic variants and knee OA susceptibility in our population. This is the first report to show association between investigated single nucleotide polymorphisms and OA among any population.


Asunto(s)
Osteoartritis de la Rodilla/genética , Resistina/genética , Resistina/metabolismo , Adulto , Anciano , Alelos , Pueblo Asiatico/genética , Estudios Transversales , Etnicidad/genética , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Genotipo , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Pakistán , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...