Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Neuron ; 111(20): 3195-3210.e7, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37543036

RESUMEN

OSCA/TMEM63s form mechanically activated (MA) ion channels in plants and animals, respectively. OSCAs and related TMEM16s and transmembrane channel-like (TMC) proteins form homodimers with two pores. Here, we uncover an unanticipated monomeric configuration of TMEM63 proteins. Structures of TMEM63A and TMEM63B (referred to as TMEM63s) revealed a single highly restricted pore. Functional analyses demonstrated that TMEM63s are bona fide mechanosensitive ion channels, characterized by small conductance and high thresholds. TMEM63s possess evolutionary variations in the intracellular linker IL2, which mediates dimerization in OSCAs. Replacement of OSCA1.2 IL2 with TMEM63A IL2 or mutations to key variable residues resulted in monomeric OSCA1.2 and MA currents with significantly higher thresholds. Structural analyses revealed substantial conformational differences in the mechano-sensing domain IL2 and gating helix TM6 between TMEM63s and OSCA1.2. Our studies reveal that mechanosensitivity in OSCA/TMEM63 channels is affected by oligomerization and suggest gating mechanisms that may be shared by OSCA/TMEM63, TMEM16, and TMC channels.


Asunto(s)
Interleucina-2 , Canales Iónicos , Animales , Interleucina-2/genética , Interleucina-2/metabolismo , Canales Iónicos/metabolismo , Mutación/genética
3.
J Gen Physiol ; 155(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37102984

RESUMEN

Mechanically activated (MA) ion channels confer somatosensory neurons with the ability to sense a wide range of mechanical stimuli. MA ion channel activity in somatosensory neurons is best described by the electrophysiological recordings of MA currents in cultured dorsal root ganglion (DRG) neurons. Biophysical and pharmacological characterization of DRG MA currents has guided the field in screening/confirming channel candidates that induce the currents and facilitate the mechanosensory response. But studies on DRG MA currents have relied mostly on whole-cell macroscopic current properties obtained by membrane indentation, and little is known about the underlying MA ion channels at the single-channel level. Here, by acquiring indentation-induced macroscopic currents as well as stretch-activated single-channel currents from the same cell, we associate macroscopic current properties with single-channel conductance. This analysis reveals the nature of the MA channel responsible for the ensemble response. We observe four different conductances in DRG neurons with no association with a specific type of macroscopic current. Applying this methodology to a Piezo2 expressing DRG neuronal subpopulation allows us to identify PIEZO2-dependent stretch-activated currents and conductance. Moreover, we demonstrate that upon Piezo2 deletion, the remaining macroscopic responses are predominantly mediated by three different single-channel conductances. Collectively, our data predict that at least two other MA ion channels exist in DRG neurons that remain to be discovered.


Asunto(s)
Ganglios Espinales , Neuronas , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Canales Iónicos/metabolismo , Transporte Iónico , Biofisica , Células Cultivadas
4.
Trends Neurosci ; 45(11): 794-795, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35989128

RESUMEN

In a recent study, Belin et al. demonstrated that glycine-bound NMDA receptors can be activated by mechanical forces in the absence of the neurotransmitter glutamate. The stretch-gated receptor exhibits biophysical properties similar to those of glutamate-gated receptors. These findings reveal that glycine-bound NMDA receptors could behave as mechanosensors in central nervous system (CNS) physiology.


Asunto(s)
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Humanos , Glicina , Receptores de Glutamato , Glutamatos , Neurotransmisores
6.
Neuron ; 110(14): 2299-2314.e8, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35613619

RESUMEN

Transcription factors specify the fate and connectivity of developing neurons. We investigate how a lineage-specific transcription factor, Acj6, controls the precise dendrite targeting of Drosophila olfactory projection neurons (PNs) by regulating the expression of cell-surface proteins. Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains, and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion molecules and proteins previously not associated with wiring, such as Piezo, whose mechanosensitive ion channel activity is dispensable for its function in PN dendrite targeting. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combined expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, Acj6 controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


Asunto(s)
Proteínas de Drosophila , Neuronas Receptoras Olfatorias , Animales , Dendritas/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Factores del Dominio POU/metabolismo , Proteómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Nat Commun ; 13(1): 850, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165281

RESUMEN

Flycatcher1 (FLYC1), a MscS homolog, has recently been identified as a candidate mechanosensitive (MS) ion channel involved in Venus flytrap prey recognition. FLYC1 is a larger protein and its sequence diverges from previously studied MscS homologs, suggesting it has unique structural features that contribute to its function. Here, we characterize FLYC1 by cryo-electron microscopy, molecular dynamics simulations, and electrophysiology. Akin to bacterial MscS and plant MSL1 channels, we find that FLYC1 central core includes side portals in the cytoplasmic cage that regulate ion preference and conduction, by identifying critical residues that modulate channel conductance. Topologically unique cytoplasmic flanking regions can adopt 'up' or 'down' conformations, making the channel asymmetric. Disruption of an up conformation-specific interaction severely delays channel deactivation by 40-fold likely due to stabilization of the channel open state. Our results illustrate novel structural features and likely conformational transitions that regulate mechano-gating of FLYC1.


Asunto(s)
Droseraceae/fisiología , Activación del Canal Iónico/fisiología , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Proteínas de Plantas/metabolismo , Línea Celular , Microscopía por Crioelectrón , Células HEK293 , Humanos , Transporte Iónico/fisiología , Simulación de Dinámica Molecular , Técnicas de Placa-Clamp , Proteínas de Plantas/genética , Conformación Proteica
8.
Am J Hum Genet ; 105(5): 996-1004, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31587869

RESUMEN

Mechanically activated (MA) ion channels convert physical forces into electrical signals. Despite the importance of this function, the involvement of mechanosensitive ion channels in human disease is poorly understood. Here we report heterozygous missense mutations in the gene encoding the MA ion channel TMEM63A that result in an infantile disorder resembling a hypomyelinating leukodystrophy. Four unrelated individuals presented with congenital nystagmus, motor delay, and deficient myelination on serial scans in infancy, prompting the diagnosis of Pelizaeus-Merzbacher (like) disease. Genomic sequencing revealed that all four individuals carry heterozygous missense variants in the pore-forming domain of TMEM63A. These variants were confirmed to have arisen de novo in three of the four individuals. While the physiological role of TMEM63A is incompletely understood, it is highly expressed in oligodendrocytes and it has recently been shown to be a MA ion channel. Using patch clamp electrophysiology, we demonstrated that each of the modeled variants result in strongly attenuated stretch-activated currents when expressed in naive cells. Unexpectedly, the clinical evolution of all four individuals has been surprisingly favorable, with substantial improvements in neurological signs and developmental progression. In the three individuals with follow-up scans after 4 years of age, the myelin deficit had almost completely resolved. Our results suggest a previously unappreciated role for mechanosensitive ion channels in myelin development.


Asunto(s)
Canales Iónicos/genética , Proteínas de la Membrana/genética , Vaina de Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Adolescente , Adulto , Preescolar , Femenino , Heterocigoto , Humanos , Masculino , Mutación Missense/genética , Oligodendroglía/metabolismo , Adulto Joven
9.
Neuron ; 102(2): 373-389.e6, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30819546

RESUMEN

Neurons exhibit a limited ability of repair. Given that mechanical forces affect neuronal outgrowth, it is important to investigate whether mechanosensitive ion channels may regulate axon regeneration. Here, we show that DmPiezo, a Ca2+-permeable non-selective cation channel, functions as an intrinsic inhibitor for axon regeneration in Drosophila. DmPiezo activation during axon regeneration induces local Ca2+ transients at the growth cone, leading to activation of nitric oxide synthase and the downstream cGMP kinase Foraging or PKG to restrict axon regrowth. Loss of DmPiezo enhances axon regeneration of sensory neurons in the peripheral and CNS. Conditional knockout of its mammalian homolog Piezo1 in vivo accelerates regeneration, while its pharmacological activation in vitro modestly reduces regeneration, suggesting the role of Piezo in inhibiting regeneration may be evolutionarily conserved. These findings provide a precedent for the involvement of mechanosensitive channels in axon regeneration and add a potential target for modulating nervous system repair.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/genética , Canales Iónicos/genética , Regeneración/genética , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Conos de Crecimiento/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/genética , Ratones , Ratones Noqueados , Regeneración Nerviosa/genética , Óxido Nítrico Sintasa/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología
10.
Elife ; 72018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382938

RESUMEN

Mechanically activated (MA) ion channels convert physical forces into electrical signals, and are essential for eukaryotic physiology. Despite their importance, few bona-fide MA channels have been described in plants and animals. Here, we show that various members of the OSCA and TMEM63 family of proteins from plants, flies, and mammals confer mechanosensitivity to naïve cells. We conclusively demonstrate that OSCA1.2, one of the Arabidopsis thaliana OSCA proteins, is an inherently mechanosensitive, pore-forming ion channel. Our results suggest that OSCA/TMEM63 proteins are the largest family of MA ion channels identified, and are conserved across eukaryotes. Our findings will enable studies to gain deep insight into molecular mechanisms of MA channel gating, and will facilitate a better understanding of mechanosensory processes in vivo across plants and animals.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Activación del Canal Iónico , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular , Animales , Arabidopsis , Fenómenos Biofísicos , Gadolinio/farmacología , Células HEK293 , Humanos , Liposomas , Concentración Osmolar
11.
Elife ; 72018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382939

RESUMEN

Mechanically activated ion channels underlie touch, hearing, shear-stress sensing, and response to turgor pressure. OSCA/TMEM63s are a newly-identified family of eukaryotic mechanically activated ion channels opened by membrane tension. The structural underpinnings of OSCA/TMEM63 function are not explored. Here, we elucidate high resolution cryo-electron microscopy structures of OSCA1.2, revealing a dimeric architecture containing eleven transmembrane helices per subunit and surprising topological similarities to TMEM16 proteins. We locate the ion permeation pathway within each subunit by demonstrating that a conserved acidic residue is a determinant of channel conductance. Molecular dynamics simulations reveal membrane interactions, suggesting the role of lipids in OSCA1.2 gating. These results lay a foundation to decipher how the structural organization of OSCA/TMEM63 is suited for their roles as MA ion channels.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestructura , Arabidopsis/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón , Activación del Canal Iónico , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Canales de Calcio/química , Línea Celular , Humanos , Lípidos/química , Mecanotransducción Celular , Modelos Moleculares , Nanopartículas
12.
Sci Transl Med ; 10(462)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305457

RESUMEN

The brush of a feather and a pinprick are perceived as distinct sensations because they are detected by discrete cutaneous sensory neurons. Inflammation or nerve injury can disrupt this sensory coding and result in maladaptive pain states, including mechanical allodynia, the development of pain in response to innocuous touch. However, the molecular mechanisms underlying the alteration of mechanical sensitization are poorly understood. In mice and humans, loss of mechanically activated PIEZO2 channels results in the inability to sense discriminative touch. However, the role of Piezo2 in acute and sensitized mechanical pain is not well defined. Here, we showed that optogenetic activation of Piezo2-expressing sensory neurons induced nociception in mice. Mice lacking Piezo2 in caudal sensory neurons had impaired nocifensive responses to mechanical stimuli. Consistently, ex vivo recordings in skin-nerve preparations from these mice showed diminished Aδ-nociceptor and C-fiber firing in response to mechanical stimulation. Punctate and dynamic allodynia in response to capsaicin-induced inflammation and spared nerve injury was absent in Piezo2-deficient mice. These results indicate that Piezo2 mediates inflammation- and nerve injury-induced sensitized mechanical pain, and suggest that targeting PIEZO2 might be an effective strategy for treating mechanical allodynia.


Asunto(s)
Hiperalgesia/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Dolor/metabolismo , Potenciales de Acción , Animales , Conducta Animal , Capsaicina , Hiperalgesia/complicaciones , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Canales Iónicos/deficiencia , Ratones Noqueados , Neuronas/metabolismo , Nocicepción , Nociceptores/metabolismo , Dolor/complicaciones , Dolor/patología , Dolor/fisiopatología
13.
Cell ; 173(2): 443-455.e12, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576450

RESUMEN

Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.


Asunto(s)
Anemia Hemolítica Congénita/patología , Población Negra/genética , Hidropesía Fetal/patología , Canales Iónicos/genética , Malaria/patología , Alelos , Anemia Hemolítica Congénita/genética , Animales , Deshidratación , Modelos Animales de Enfermedad , Eritrocitos/citología , Eritrocitos/metabolismo , Eliminación de Gen , Genotipo , Humanos , Hidropesía Fetal/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/deficiencia , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales Iónicos/química , Malaria/genética , Malaria/parasitología , Malaria/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/patogenicidad , Linfocitos T/citología , Linfocitos T/metabolismo
14.
Nature ; 554(7693): 481-486, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29261642

RESUMEN

Piezo1 and Piezo2 are mechanically activated ion channels that mediate touch perception, proprioception and vascular development. Piezo proteins are distinct from other ion channels and their structure remains poorly defined, which impedes detailed study of their gating and ion permeation properties. Here we report a high-resolution cryo-electron microscopy structure of the mouse Piezo1 trimer. The detergent-solubilized complex adopts a three-bladed propeller shape with a curved transmembrane region containing at least 26 transmembrane helices per protomer. The flexible propeller blades can adopt distinct conformations, and consist of a series of four-transmembrane helical bundles that we term Piezo repeats. Carboxy-terminal domains line the central ion pore, and the channel is closed by constrictions in the cytosol. A kinked helical beam and anchor domain link the Piezo repeats to the pore, and are poised to control gating allosterically. The structure provides a foundation to dissect further how Piezo channels are regulated by mechanical force.


Asunto(s)
Microscopía por Crioelectrón , Canales Iónicos/química , Canales Iónicos/ultraestructura , Animales , Sitios de Unión , Activación del Canal Iónico , Canales Iónicos/genética , Canales Iónicos/metabolismo , Lípidos , Ratones , Modelos Moleculares , Mutación , Docilidad , Dominios Proteicos , Solubilidad
15.
Nat Rev Mol Cell Biol ; 18(12): 771-783, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28974772

RESUMEN

Cellular mechanotransduction, the process of translating mechanical forces into biological signals, is crucial for a wide range of physiological processes. A role for ion channels in sensing mechanical forces has been proposed for decades, but their identity in mammals remained largely elusive until the discovery of Piezos. Recent research on Piezos has underscored their importance in somatosensation (touch perception, proprioception and pulmonary respiration), red blood cell volume regulation, vascular physiology and various human genetic disorders.


Asunto(s)
Enfermedades Genéticas Congénitas/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Propiocepción , Mecánica Respiratoria , Percepción del Tacto , Animales , Enfermedades Genéticas Congénitas/genética , Humanos , Canales Iónicos/genética
16.
Cell ; 164(3): 499-511, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824658

RESUMEN

The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown. Here, we show that SWELL1 and up to four other LRRC8 subunits assemble into heterogeneous complexes of ∼800 kDa. When reconstituted into bilayers, LRRC8 complexes are sufficient to form anion channels activated by osmolality gradients. In bilayers, as well as in cells, the single-channel conductance of the complexes depends on the LRRC8 composition. Finally, low ionic strength (Γ) in the absence of an osmotic gradient activates the complexes in bilayers. These data demonstrate that LRRC8 proteins together constitute the VRAC pore and that hypotonic stress can activate VRAC through a decrease in cytoplasmic Γ.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Células HeLa , Humanos , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ósmosis
17.
Nat Commun ; 6: 7223, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26008989

RESUMEN

Piezo1 and Piezo2 encode mechanically activated cation channels that function as mechanotransducers involved in vascular system development and touch sensing, respectively. Structural features of Piezos remain unknown. Mouse Piezo1 is bioinformatically predicted to have 30-40 transmembrane (TM) domains. Here, we find that nine of the putative inter-transmembrane regions are accessible from the extracellular side. We use chimeras between mPiezo1 and dPiezo to show that ion-permeation properties are conferred by C-terminal region. We further identify a glutamate residue within a conserved region adjacent to the last two putative TM domains of the protein, that when mutated, affects unitary conductance and ion selectivity, and modulates pore block. We propose that this amino acid is either in the pore or closely associates with the pore. Our results describe important structural motifs of this channel family and lay the groundwork for a mechanistic understanding of how Piezos are mechanically gated and conduct ions.


Asunto(s)
Proteínas de Drosophila/química , Canales Iónicos/química , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Datos de Secuencia Molecular
18.
Proc Natl Acad Sci U S A ; 111(28): 10347-52, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24958852

RESUMEN

Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.


Asunto(s)
Sistema Cardiovascular/embriología , Desarrollo Embrionario/fisiología , Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Animales , Sistema Cardiovascular/citología , Células Endoteliales/citología , Canales Iónicos/genética , Ratones , Ratones Transgénicos
19.
J Vis Exp ; (88)2014 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24961614

RESUMEN

Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel's conductance properties and the temporal sequence of open-closed conformations that make up the channel's activation mechanism, thus helping to understand their functions in health and disease.


Asunto(s)
Canales Iónicos/metabolismo , Técnicas de Placa-Clamp/métodos , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Células HEK293 , Humanos , Activación del Canal Iónico , Canales Iónicos/química , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
20.
Nat Commun ; 4: 1884, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23695678

RESUMEN

Dehydrated hereditary stomatocytosis is a genetic condition with defective red blood cell membrane properties that causes an imbalance in intracellular cation concentrations. Recently, two missense mutations in the mechanically activated PIEZO1 (FAM38A) ion channel were associated with dehydrated hereditary stomatocytosis. However, it is not known how these mutations affect PIEZO1 function. Here, by combining linkage analysis and whole-exome sequencing in a large pedigree and Sanger sequencing in two additional kindreds and 11 unrelated dehydrated hereditary stomatocytosis cases, we identify three novel missense mutations and one recurrent duplication in PIEZO1, demonstrating that it is the major gene for dehydrated hereditary stomatocytosis. All the dehydrated hereditary stomatocytosis-associated mutations locate at C-terminal half of PIEZO1. Remarkably, we find that all PIEZO1 mutations give rise to mechanically activated currents that inactivate more slowly than wild-type currents. This gain-of-function PIEZO1 phenotype provides insight that helps to explain the increased permeability of cations in red blood cells of dehydrated hereditary stomatocytosis patients. Our findings also suggest a new role for mechanotransduction in red blood cell biology and pathophysiology.


Asunto(s)
Anemia Hemolítica Congénita/genética , Hidropesía Fetal/genética , Activación del Canal Iónico/genética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mutación/genética , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Niño , Análisis Mutacional de ADN , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos/química , Cinética , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Proteínas Recombinantes/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA