Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(10): 113128, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742194

RESUMEN

Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.


Asunto(s)
Conexinas , Microglía , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Conexinas/metabolismo , Muerte Celular , Adenosina Trifosfato/metabolismo
2.
Epilepsia ; 64(4): 888-899, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708090

RESUMEN

OBJECTIVE: For an antiseizure medication (ASM) to be effective in status epilepticus (SE), the drug should be administered intravenously (i.v.) to provide quick access to the brain. However, poor aqueous solubility is a major problem in the development of parenteral drug solutions. Given its multiple mechanisms of action, topiramate (TPM) is a promising candidate for the treatment of established or refractory SE, as supported by clinical studies using nasogastric tube TPM administration. However, TPM is not clinically available as a solution for i.v. administration, which hampers its use in the treatment of SE. Here, we describe a novel easy-to-use and easy-to-prepare i.v. TPM formulation using the U.S. Food and Drug Administration (FDA)-approved excipient meglumine. METHODS: During formulation development, we compared the solubility of TPM in bi-distilled water with vs without a range of meglumine concentrations. Furthermore, the solubility of combinations of TPM and levetiracetam and TPM, levetiracetam, and atorvastatin in aqueous meglumine concentrations was determined. Subsequently, the pharmacokinetics and tolerability of meglumine-based solutions of TPM and TPM combinations were evaluated in rats, including animals following fluid percussion injury or pilocarpine-induced SE. RESULTS: The amino sugar meglumine markedly enhances the aqueous solubility of TPM. A comparison with data on dissolving TPM using sulfobutylether-ß-cyclodextrin (Captisol) demonstrates that meglumine is much more effective for dissolving TPM. Furthermore, meglumine can be used to prepare drug cocktails where TPM is co-administered with another ASM for SE treatment. The tolerability studies of the meglumine-based TPM solution and meglumine-based TPM combinations in normal rats and the rat fluid percussion injury and pilocarpine-induced SE models demonstrate excellent tolerability of the novel drug solutions. Preclinical studies on antiseizure efficacy in the SE model are underway. SIGNIFICANCE: In conclusion, the novel meglumine-based solution of TPM presented here may be well suited for clinical development.


Asunto(s)
Anticonvulsivantes , Estado Epiléptico , Ratas , Animales , Topiramato/uso terapéutico , Pilocarpina , Levetiracetam/uso terapéutico , Fructosa/farmacología , Fructosa/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/inducido químicamente
3.
Neuropharmacology ; 222: 109296, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36377091

RESUMEN

Alcohol-related poisoning is the foremost cause of death resulting from excessive acute alcohol consumption. Respiratory failure is crucial to the pathophysiology of fatal alcohol poisoning. Alcohol increases accumulation of extracellular adenosine. Adenosine suppresses breathing. The goal of this investigation was to test the hypothesis that adenosine signaling contributes to alcohol-induced respiratory suppression. In the first experiment, the breathing of mice was monitored following an injection of the non-selective adenosine receptor antagonist caffeine (40 mg/kg), alcohol (5 g/kg), or alcohol and caffeine combined. Caffeine reduced alcohol-induced respiratory suppression suggesting that adenosine contributes to the effects of alcohol on breathing. The second experiment utilized the same experimental design, but with the blood brain barrier impermeant non-selective adenosine receptor antagonist 8-sulfophenyltheophylline (8-SPT, 60 mg/kg) instead of caffeine. 8-SPT did not reduce alcohol-induced respiratory suppression suggesting that adenosine is contributing to alcohol-induced respiratory suppression in the central nervous system. The third and fourth experiments used the same experimental design as the first, but with the selective A1 receptor antagonist DPCPX (1 mg/kg) and the selective A2A receptor antagonist istradefylline (3.3 mg/kg). Istradefylline, but not DPCPX, reduced alcohol-induced respiratory suppression indicating an A2A receptor mediated effect. In the fifth experiment, alcohol-induced respiratory suppression was evaluated in Adk+/- mice which have impaired adenosine metabolism. Alcohol-induced respiratory suppression was exacerbated in Adk+/- mice. These findings indicate that adenosinergic signaling contributes to alcohol-induced respiratory suppression. Improving our understanding of how alcohol affects breathing may lead to better treatment strategies and better outcomes for patients with severe alcohol poisoning.


Asunto(s)
Adenosina , Insuficiencia Respiratoria , Animales , Ratones , Adenosina/farmacología , Cafeína/farmacología , Etanol , Sistema Respiratorio , Antagonistas de Receptores Purinérgicos P1/farmacología , Receptor de Adenosina A2A , Antagonistas del Receptor de Adenosina A2/farmacología , Xantinas/farmacología , Receptor de Adenosina A1
4.
Cell Death Differ ; 30(3): 687-701, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36207442

RESUMEN

Potassium (K+) channels are robustly expressed during prenatal brain development, including in progenitor cells and migrating neurons, but their function is poorly understood. Here, we investigate the role of voltage-gated K+ channel KCNB1 (Kv2.1) in neocortical development. Neuronal migration of glutamatergic neurons was impaired in the neocortices of KCNB1 null mice. Migratory defects persisted into the adult brains, along with disrupted morphology and synaptic connectivity. Mice developed seizure phenotype, anxiety, and compulsive behavior. To determine whether defective KCNB1 can give rise to developmental channelopathy, we constructed Knock In (KI) mice, harboring the gene variant Kcnb1R312H (R312H mice) found in children with developmental and epileptic encephalopathies (DEEs). The R312H mice exhibited a similar phenotype to the null mice. Wild type (WT) and R312H KCNB1 channels made complexes with integrins α5ß5 (Integrin_K+ channel_Complexes, IKCs), whose biochemical signaling was impaired in R312H brains. Treatment with Angiotensin II in vitro, an agonist of Focal Adhesion kinase, a key component of IKC signaling machinery, corrected the neuronal abnormalities. Thus, a genetic mutation in a K+ channel induces severe neuromorphological abnormalities through non-conducting mechanisms, that can be rescued by pharmacological intervention. This underscores a previously unknown role of IKCs as key players in neuronal development, and implicate developmental channelopathies in the etiology of DEEs.


Asunto(s)
Epilepsia , Neocórtex , Animales , Ratones , Epilepsia/genética , Integrinas/genética , Ratones Noqueados , Mutación , Canales de Potasio/genética
5.
Brain Commun ; 4(5): fcac232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36196086

RESUMEN

Sudden unexpected death in epilepsy is the leading cause of epilepsy related death. Currently, there are no reliable methods for preventing sudden unexpected death in epilepsy. The precise pathophysiology of sudden unexpected death in epilepsy is unclear; however, convergent lines of evidence suggest that seizure-induced respiratory arrest plays a central role. It is generally agreed that sudden unexpected death in epilepsy could be averted if the patient could be rapidly ventilated following the seizure. The diaphragm is a muscle in the chest which contracts to draw air into the lungs. Diaphragmatic pacing is a surgical intervention which facilitates normal ventilation in situations, such as spinal cord injury and sleep apnoea, in which endogenous respiration would be inadequate or non-existent. In diaphragmatic pacing, electrodes are implanted directly onto diaphragm or adjacent to the phrenic nerves which innervate the diaphragm. These electrodes are then rhythmically stimulated, thereby eliciting contractions of the diaphragm which emulate endogenous breathing. The goal of this study was to test the hypothesis that seizure-induced respiratory arrest and death can be prevented with diaphragmatic pacing. Our approach was to induce respiratory arrest using maximal electroshock seizures in adult, male, C57BL6 mice outfitted with EEG and diaphragmatic electrodes (n = 8 mice). In the experimental group, the diaphragm was stimulated to exogenously induce breathing. In the control group, no stimulation was applied. Breathing and cortical electrographic activity were monitored using whole body plethysmography and EEG, respectively. A majority of the animals that did not receive the diaphragmatic pacing intervention died of seizure-induced respiratory arrest. Conversely, none of the animals that received the diaphragmatic pacing intervention died. Diaphragmatic pacing improved postictal respiratory outcomes (two-way ANOVA, P < 0.001) and reduced the likelyhood of seizure-induced death (Fisher's exact test, P = 0.026). Unexpectedly, diaphragmatic pacing did not instantly restore breathing during the postictal period, potentially indicating peripheral airway occlusion by laryngospasm. All diaphragmatically paced animals breathed at some point during the pacing stimulation. Two animals took their first breath prior to the onset of pacing and some animals had significant apnoeas after the pacing stimulation. Sudden unexpected death in epilepsy results in more years of potential life lost than any other neurological condition with the exception of stroke. By demonstrating that seizure-induced respiratory arrest can be prevented by transient diaphragmatic pacing in animal models we hope to inform the development of closed-loop systems capable of detecting and preventing sudden unexpected death in epilepsy.

6.
Mol Brain ; 15(1): 86, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289499

RESUMEN

Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in inflammatory pain that could be used for potential therapeutic strategies.


Asunto(s)
Microglía , Neuralgia , Ratones , Animales , Antagonistas del Receptor Purinérgico P2Y , Neuronas/fisiología , Formaldehído
7.
Neural Regen Res ; 17(6): 1183-1189, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34782552

RESUMEN

After spinal cord injury, microglia as the first responders to the lesion display both beneficial and detrimental characteristics. Activated microglia phagocyte and eliminate cell debris, release cytokines to recruit peripheral immune cells to the injury site. Excessively activated microglia can aggravate the secondary damage by producing extravagant reactive oxygen species and pro-inflammatory cytokines. Recent studies demonstrated that the voltage-gated proton channel Hv1 is selectively expressed in microglia and regulates microglial activation upon injury. In mouse models of spinal cord injury, Hv1 deficiency ameliorates microglia activation, resulting in alleviated production of reactive oxygen species and pro-inflammatory cytokines. The reduced secondary damage subsequently decreases neuronal loss and correlates with improved locomotor recovery. This review provides a brief historical perspective of advances in investigating voltage-gated proton channel Hv1 and home in on microglial Hv1. We discuss recent studies on the roles of Hv1 activation in pathophysiological activities of microglia, such as production of NOX-dependent reactive oxygen species, microglia polarization, and tissue acidosis, particularly in the context of spinal cord injury. Further, we highlight the rationale for targeting Hv1 for the treatment of spinal cord injury and related disorders.

8.
Front Neurosci ; 15: 708304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34321997

RESUMEN

Adenosine is an inhibitory modulator of neuronal excitability. Neuronal activity results in increased adenosine release, thereby constraining excessive excitation. The exceptionally high neuronal activity of a seizure results in a surge in extracellular adenosine to concentrations many-fold higher than would be observed under normal conditions. In this review, we discuss the multifarious effects of adenosine signaling in the context of epilepsy, with emphasis on sudden unexpected death in epilepsy (SUDEP). We describe and categorize the beneficial, detrimental, and potentially deadly aspects of adenosine signaling. The good or beneficial characteristics of adenosine signaling in the context of seizures include: (1) its direct effect on seizure termination and the prevention of status epilepticus; (2) the vasodilatory effect of adenosine, potentially counteracting postictal vasoconstriction; (3) its neuroprotective effects under hypoxic conditions; and (4) its disease modifying antiepileptogenic effect. The bad or detrimental effects of adenosine signaling include: (1) its capacity to suppress breathing and contribute to peri-ictal respiratory dysfunction; (2) its contribution to postictal generalized EEG suppression (PGES); (3) the prolonged increase in extracellular adenosine following spreading depolarization waves may contribute to postictal neuronal dysfunction; (4) the excitatory effects of A2A receptor activation is thought to exacerbate seizures in some instances; and (5) its potential contributions to sleep alterations in epilepsy. Finally, the adverse effects of adenosine signaling may potentiate a deadly outcome in the form of SUDEP by suppressing breathing and arousal in the postictal period. Evidence from animal models suggests that excessive postictal adenosine signaling contributes to the pathophysiology of SUDEP. The goal of this review is to discuss the beneficial, harmful, and potentially deadly roles that adenosine plays in the context of epilepsy and to identify crucial gaps in knowledge where further investigation is necessary. By better understanding adenosine dynamics, we may gain insights into the treatment of epilepsy and the prevention of SUDEP.

9.
Neurochem Int ; 147: 105054, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33961946

RESUMEN

Adenosine kinase (ADK) is the key regulator of adenosine and catalyzes the metabolism of adenosine to 5'-adenosine monophosphate. The enzyme exists in two isoforms: a long isoform (ADK-long, ADK-L) and a short isoform (ADK-short, ADK-S). The two isoforms are developmentally regulated and are differentially expressed in distinct subcellular compartments with ADK-L localized in the nucleus and ADK-S localized in the cytoplasm. The nuclear localization of ADK-L and its biochemical link to the transmethylation pathway suggest a specific role for gene regulation via epigenetic mechanisms. Recent evidence reveals an adenosine receptor-independent role of ADK in determining the global methylation status of DNA and thereby contributing to epigenomic regulation. Here we summarize recent progress in understanding the biochemical interactions between adenosine metabolism by ADK-L and epigenetic modifications linked to transmethylation reactions. This review will provide a comprehensive overview of ADK-associated changes in DNA methylation in developmental, as well as in pathological conditions including brain injury, epilepsy, vascular diseases, cancer, and diabetes. Challenges in investigating the epigenetic role of ADK for therapeutic gains are briefly discussed.


Asunto(s)
Adenosina Quinasa/metabolismo , Lesiones Encefálicas/metabolismo , Epigénesis Genética/genética , Epilepsia/metabolismo , Adenosina Quinasa/genética , Animales , Metilación de ADN/genética , Metilación de ADN/fisiología , Epilepsia/genética , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Humanos
10.
Neuropharmacology ; 184: 108405, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33212114

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacological suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p < 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions.


Asunto(s)
Adenosina Quinasa/antagonistas & inhibidores , Nervio Frénico/enzimología , Nervio Frénico/fisiopatología , Convulsiones/enzimología , Convulsiones/fisiopatología , Muerte Súbita e Inesperada en la Epilepsia , Adenosina Quinasa/metabolismo , Animales , Ácido Kaínico/toxicidad , Masculino , Nervio Frénico/efectos de los fármacos , Valor Predictivo de las Pruebas , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Tubercidina/análogos & derivados , Tubercidina/farmacología
11.
Front Pharmacol ; 11: 594487, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324223

RESUMEN

The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) requires urgent clinical interventions. Crucial clinical needs are: 1) prevention of infection and spread of the virus within lung epithelia and between people, 2) attenuation of excessive lung injury in Advanced Respiratory Distress Syndrome, which develops during the end stage of the disease, and 3) prevention of thrombosis associated with SARS-CoV-2 infection. Adenosine and the key adenosine regulators adenosine deaminase (ADA), adenosine kinase (ADK), and equilibrative nucleoside transporter 1 may play a role in COVID-19 pathogenesis. Here, we highlight 1) the non-enzymatic role of ADA by which it might out-compete the virus (SARS-CoV-2) for binding to the CD26 receptor, 2) the enzymatic roles of ADK and ADA to increase adenosine levels and ameliorate Advanced Respiratory Distress Syndrome, and 3) inhibition of adenosine transporters to reduce platelet activation, thrombosis and improve COVID-19 outcomes. Depending on the stage of exposure to and infection by SARS-CoV-2, enhancing adenosine levels by targeting key adenosine regulators such as ADA, ADK and equilibrative nucleoside transporter 1 might find therapeutic use against COVID-19 and warrants further investigation.

12.
Mol Brain ; 13(1): 143, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081841

RESUMEN

Traumatic injury to the spinal cord initiates a series of pathological cellular processes that exacerbate tissue damage at and beyond the original site of injury. This secondary damage includes oxidative stress and inflammatory cascades that can lead to further neuronal loss and motor deficits. Microglial activation is an essential component of these secondary signaling cascades. The voltage-gated proton channel, Hv1, functionally expressed in microglia has been implicated in microglia polarization and oxidative stress in ischemic stroke. Here, we investigate whether Hv1 mediates microglial/macrophage activation and aggravates secondary damage following spinal cord injury (SCI). Following contusion SCI, wild-type (WT) mice showed significant tissue damage, white matter damage and impaired motor recovery. However, mice lacking Hv1 (Hv1-/-) showed significant white matter sparing and improved motor recovery. The improved motor recovery in Hv1-/- mice was associated with decreased interleukin-1ß, reactive oxygen/ nitrogen species production and reduced neuronal loss. Further, deficiency of Hv1 directly influenced microglia activation as noted by decrease in microglia numbers, soma size and reduced outward rectifier K+ current density in Hv1-/- mice compared to WT mice at 7 d following SCI. Our results therefore implicate that Hv1 may be a promising potential therapeutic target to alleviate secondary damage following SCI caused by microglia/macrophage activation.


Asunto(s)
Canales Iónicos/metabolismo , Actividad Motora , Neuronas/metabolismo , Neuronas/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Animales , Modelos Animales de Enfermedad , Inflamación/patología , Interleucina-1beta/metabolismo , Canales Iónicos/deficiencia , Masculino , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Modelos Biológicos , Estrés Oxidativo
13.
Epilepsy Res ; 167: 106444, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32854046

RESUMEN

High fat, low carbohydrate ketogenic diets (KD) have been in use for the treatment of epilepsy for almost a hundred years. Remarkably, seizures that are resistant to conventional anti-seizure drugs can in many cases be controlled by the KD therapy, and it has been shown that many patients with epilepsy become seizure free even after discontinuation of the diet. These findings suggest that KD combine anti-seizure effects with disease modifying effects. In addition to the treatment of epilepsy, KDs are now widely used for the treatment of a wide range of conditions including weight reduction, diabetes, and cancer. The reason for the success of metabolic therapies is based on the synergism of at least a dozen different mechanisms through which KDs provide beneficial activities. Among the newest findings are epigenetic mechanisms (DNA methylation and histone acetylation) through which KD exerts long-lasting disease modifying effects. Here we review mechanisms through which KD can affect neuroprotection in the brain, and how a combination of those mechanisms with epigenetic alterations can attenuate and possibly reverse the development of epilepsy.


Asunto(s)
Dieta Cetogénica , Epilepsia/dietoterapia , Neuroprotección/fisiología , Convulsiones/dietoterapia , Encéfalo/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Dieta Baja en Carbohidratos/métodos , Dieta Cetogénica/métodos , Humanos
14.
Brain Behav Immun ; 88: 340-352, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32240765

RESUMEN

The activation of resident microglia and infiltrated monocytes are known potent mediators of chronic neuroinflammation following traumatic brain injury (TBI). In this study, we use a mouse model of blast-induced TBI (bTBI) to investigate whether microglia and monocytes contribute to the neuroinflammatory and behavioral consequences of bTBI. Eight-ten week old mice were subject to moderate TBI (180 kPa) in a shock tube. Using double transgenic CCR2RFP/+: CX3CR1GFP/+ mice, we were able to note that in addition to resident Cx3CR1+ microglia, infiltrating CCR2+ monocytes also contributed to the expanding macrophage population that was observed after bTBI. The microglia activation and monocyte infiltration occurred as early as 4 h and lasted up to 30d after blast exposure, suggesting chronic inflammation. The infiltration of monocytes may be partly mediated by chemokine CCL2-CCR2 signaling axis and compromised blood brain barrier permeability. Hence, bTBI-induced infiltration of monocytes and production of IL-1ß were prevented in mice lacking CCR2 (CCR2 KO). Finally, this study showed that interference of monocyte infiltration using CCR2 KO, ameliorated the chronic effects of bTBI such as anxiety-like behavior and short-term memory decline. Taken together, these data suggest that bTBI leads to activation of both resident microglia and infiltrated monocytes. The infiltration of monocytes was partly mediated by CCL2-CCR2 signaling, which in turn contributes to increased production of IL-1ß leading to behavioral deficits after bTBI. Furthermore, bTBI induced behavioral outcomes were reduced by targeting CCL2-CCR2 signaling, highlighting the significance of this signaling axis in bTBI pathology.


Asunto(s)
Ansiedad/etiología , Traumatismos por Explosión/complicaciones , Lesiones Traumáticas del Encéfalo/complicaciones , Quimiocina CCL2 , Monocitos , Receptores CCR2 , Animales , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
15.
Glia ; 67(8): 1434-1448, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31179602

RESUMEN

Microglial activation has been recognized as a major contributor to inflammation of the epileptic brain. Seizures are commonly accompanied by remarkable microgliosis and loss of neurons. In this study, we utilize the CX3CR1GFP/+ CCR2RFP/+ genetic mouse model, in which CX3CR1+ resident microglia and CCR2+ monocytes are labeled with GFP and RFP, respectively. Using a combination of time-lapse two-photon imaging and whole-cell patch clamp recording, we determined the distinct morphological, dynamic, and electrophysiological characteristics of infiltrated monocytes and resident microglia, and the evolution of their behavior at different time points following kainic acid-induced seizures. Seizure activated microglia presented enlarged somas with less ramified processes, whereas, infiltrated monocytes were smaller, highly motile cells that lacked processes. Moreover, resident microglia, but not infiltrated monocytes, proliferate locally in the hippocampus after seizure. Microglial proliferation was dependent on the colony-stimulating factor 1 receptor (CSF-1R) pathway. Pharmacological inhibition of CSF-1R reduced seizure-induced microglial proliferation, which correlated with attenuation of neuronal death without altering acute seizure behaviors. Taken together, we demonstrated that proliferation of activated resident microglia contributes to neuronal death in the hippocampus via CSF-1R after status epilepticus, providing potential therapeutic targets for neuroprotection in epilepsy.


Asunto(s)
Proliferación Celular , Gliosis/fisiopatología , Microglía/fisiología , Monocitos/fisiología , Estado Epiléptico/fisiopatología , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Proteínas de Unión al Calcio/metabolismo , Muerte Celular , Modelos Animales de Enfermedad , Gliosis/etiología , Hipocampo/fisiopatología , Ácido Kaínico , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Neuronas/fisiología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Estado Epiléptico/complicaciones , Técnicas de Cultivo de Tejidos
16.
Cell Rep ; 27(13): 3844-3859.e6, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242418

RESUMEN

Spinal long-term potentiation (LTP) at C-fiber synapses is hypothesized to underlie chronic pain. However, a causal link between spinal LTP and chronic pain is still lacking. Here, we report that high-frequency stimulation (HFS; 100 Hz, 10 V) of the mouse sciatic nerve reliably induces spinal LTP without causing nerve injury. LTP-inducible stimulation triggers chronic pain lasting for more than 35 days and increases the number of calcitonin gene-related peptide (CGRP) terminals in the spinal dorsal horn. The behavioral and morphological changes can be prevented by blocking NMDA receptors, ablating spinal microglia, or conditionally deleting microglial brain-derived neurotrophic factor (BDNF). HFS-induced spinal LTP, microglial activation, and upregulation of BDNF are inhibited by antibodies against colony-stimulating factor 1 (CSF-1). Together, our results show that microglial CSF1 and BDNF signaling are indispensable for spinal LTP and chronic pain. The microglia-dependent transition of synaptic potentiation to structural alterations in pain pathways may underlie pain chronicity.


Asunto(s)
Dolor Crónico/metabolismo , Potenciación a Largo Plazo , Microglía/metabolismo , Plasticidad Neuronal , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Dolor Crónico/genética , Dolor Crónico/patología , Ratones , Ratones Transgénicos , Microglía/patología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Asta Dorsal de la Médula Espinal/patología
17.
Mol Neurobiol ; 56(7): 5202-5228, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30554385

RESUMEN

Microglia have been implicated as a key mediator of chronic inflammation following traumatic brain injury (TBI). The animal models of TBI vary significantly based on the type of brain injury (focal versus diffuse). This has made it extremely difficult to assess the role of microglia and the window of microglia activation. Hence, the focus of this review is to summarize the time course of microglia activation in various animal models of TBI. The review explores the repertoire of secondary injury mechanisms such as aberrant neurotransmitter release, oxidative stress, blood-brain barrier disruption, and production of pro-inflammatory cytokines that follow microglia activation. Since receptors act as sensors for activation, we highlight certain microglia receptors that have been implicated in TBI pathology, including fractalkine receptor (CX3CR1), purinergic receptor (P2Y12R), Toll-like receptor (TLR4), scavenger receptors, tumor necrosis factor receptor (TNF-1R), interleukin receptor (IL-1R), complement receptors, and peroxisome proliferator-activated receptor (PPAR). In addition to describing their downstream signaling pathways in TBI, we describe the functional consequences of their activation and the implication in behavioral outcomes. Taken together, this review will provide a holistic view of the role of microglia and its receptors in TBI based on animal studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Microglía/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/patología , Humanos , Microglía/patología
18.
Cell Rep ; 23(4): 959-966, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29694903

RESUMEN

Microglia are an exquisitely tiled and self-contained population in the CNS that do not receive contributions from circulating monocytes in the periphery. While microglia are long-lived cells, the extent to which their cell bodies are fixed and the molecular mechanisms by which the microglial landscape is regulated have not been determined. Using chronic in vivo two-photon imaging to follow the microglial population in young adult mice, we document a daily rearrangement of the microglial landscape. Furthermore, we show that the microglial landscape can be modulated by severe seizures, acute injury, and sensory deprivation. Finally, we demonstrate a critical role for microglial P2Y12Rs in regulating the microglial landscape through cellular translocation independent of proliferation. These findings suggest that microglial patrol the CNS through both process motility and soma translocation.


Asunto(s)
Movimiento Celular , Proliferación Celular , Microglía/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Microglía/citología , Microscopía de Fluorescencia por Excitación Multifotónica , Receptores Purinérgicos P2Y12/genética
19.
Sci Rep ; 8(1): 828, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339791

RESUMEN

Microglia are known to engage in physical interactions with neurons. However, our understanding of the detailed mechanistic regulation of microglia-neuron interactions is incomplete. Here, using high resolution two photon imaging, we investigated the regulation of NMDA receptor-induced microglia-neuron physical interactions. We found that the GluN2A inhibitor NVPAAM007, but not the GluN2B inhibitor ifenprodil, blocked the occurrence of these interactions. Consistent with the well-known developmental regulation of the GluN2A subunit, these interactions are absent in neonatal tissues. Furthermore, consistent with a preferential synaptic localization of GluN2A subunits, there is a differential sensitivity of their occurrence between denser (stratum radiatum) and less dense (stratum pyramidale) synaptic sub-regions of the CA1. Finally, consistent with differentially expressed GluN2A subunits in the CA1 and DG areas of the hippocampus, these interactions could not be elicited in the DG despite robust microglial chemotactic capabilities. Together, these results enhance our understanding of the mechanistic regulation of NMDA receptor-dependent microglia-neuronal physical interactions phenomena by the GluN2A subunit that may be relevant in the mammalian brain during heightened glutamatergic neurotransmission such as epilepsy and ischemic stroke.


Asunto(s)
Microglía/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Femenino , Ácido Glutámico/farmacología , Masculino , Ratones , Microscopía de Fluorescencia por Excitación Multifotónica , N-Metilaspartato/farmacología , Técnicas de Placa-Clamp , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
20.
Dev Neurobiol ; 78(6): 604-617, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29318762

RESUMEN

Microglia as immune cells of the central nervous system (CNS) play significant roles not only in pathology but also in physiology, such as shaping of the CNS during development and its proper maintenance in maturity. Emerging research is showing a close association between microglia and the neurovasculature that is critical for brain energy supply. In this review, we summarize the current literature on microglial interaction with the vascular system in the normal and diseased brain. First, we highlight data that indicate interesting potential involvement of microglia in developmental angiogenesis. Then we discuss the evidence for microglial participation with the vasculature in neuropathologies from brain tumors to acute injuries such as ischemic stroke to chronic neurodegenerative conditions. We conclude by suggesting future areas of research to advance the field in light of current technical progress and outstanding questions. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 604-617, 2018.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Microglía/fisiología , Animales , Encéfalo/fisiología , Humanos , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...