Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(17): 7263-7267, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38618749

RESUMEN

New organophosphate complexes [Ln(dippH)3(dippH2)3]·(H2O)6, (Ln = Dy, Yb and Y; dippH2 = 2,6-diisopropylphenyl phosphate), displaying octahedral coordination geometry around the metal ion, exhibit unusual slow relaxation of magnetisation, which is investigated through experimental studies and ab initio CASSCF calculations.

2.
Inorg Chem ; 62(46): 18915-18925, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37947449

RESUMEN

Three mononuclear cobalt(II) tetrahedral complexes [Co(CzPh2PO)2X2] (CzPh2PO = (9H-carbazol-9-yl)diphenylphosphine oxide and X = Cl (1), Br (2), I (3)) have been synthesized using a simple synthetic approach to examine their single-ion magnetic (SIM) behavior. A detailed study of the variation in the dynamic magnetic properties of the Co(II) ion in a tetrahedral ligand field has been carried out by the change of the halide ligand. The axial zero-field splitting parameter D was found to vary from -16.4 cm-1 in 1 to -13.8 cm-1 in 2 and +14.6 cm-1 in 3. All the new complexes exhibit field-induced SIM behavior. The results obtained from ab initio CASSF calculations match well with the experimental data, revealing how halide ions induce a change in the D value as we move from Cl- to I-. The ab initio calculations further reveal that the change in the sign of D is due to the multideterminant characteristics of the ground state wave function of 1 and 2, while single-determinant characteristics are instead observed for 3. To gain a better understanding of the relationship between the structural distortion and the sign and magnitude of D values, magnetostructural D correlations were developed using angular relationships, revealing the importance of structural distortions over the heavy halide effect in controlling the sign of D values. This study broadens the scope of employing electronically and sterically modified phosphine oxide ligands in building new types of air-stable Co(II) SIMs.

3.
Dalton Trans ; 52(26): 8943-8955, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37317701

RESUMEN

Single-ion magnets (SIMs) have attracted wide attention in recent years. Despite tremendous progress in late lanthanide SIMs, reports on early lanthanides exhibiting SIM characteristics are scarce. A series of five novel 18-crown-6 encapsulated mononuclear early lanthanide(III) organophosphates, [{(18-crown-6)Ln(dippH)3}{(18-crown-6)Ln(dippH)2(dippH2)}]·[I3] [Ln = Ce (1), Pr (2), Nd (3)] and [{Ln(18-crown-6)(dippH)2(H2O)}·{I3}] [Ln = Sm (4) and Eu (5)], have been synthesised in the present study. 18-crown-6 coordinates to Ln(III) ions in an equatorial position while the axial positions are occupied by either three phosphate moieties as in 1-3 or two phosphate moieties and one water molecule as in 4 and 5, resulting in a muffin-shaped coordination geometry around the Ln(III) centres. Magnetic susceptibility measurements reveal that Ce and Nd complexes are field-induced single-ion magnets with significant barrier heights. Furthermore, the ab initio CASSCF/RASSI-SO/SINGLE_ANISO calculations on complexes 1 and 3 reveal significant QTM in the ground state rationalising the field-induced single-ion magnetism behaviour of these complexes.

4.
Inorg Chem ; 62(21): 8435-8441, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37171409

RESUMEN

Gadolinium is a special case in spectroscopy because of the near isotropic nature of the 4f7 configuration of the +3 oxidation state. Gd3+ complexes have been studied in several symmetries to understand the underlying mechanisms of the ground state splitting. The abundance of information in Gd3+ spectra can be used as a probe for properties of the other rare earth ions in the same complexes. In this work, the zero-field splitting (ZFS) of a series of Gd3+ pentagonal bipyramidal complexes of the form [GdX1X2(Leq)5]n+ [n = 1, X = axial ligands: Cl-, -OtBu, -OArF5 or n = 3, X = tBuPO(NHiPr)2, Leq = equatorial ligand: Py, THF or H2O] with near fivefold symmetry axes along X1-Gd-X2 was investigated. The ZFS parameters were determined by fitting of room-temperature continuous wave electron paramagnetic resonance (EPR) spectra (at X-, K-, and Q-band) to a spin Hamiltonian incorporating extended Stevens operators compatible with C5 symmetry. Examination of the acquired parameters led to the conclusion that the ZFS is dominated by the B20 term and that the magnitude of B20 is almost entirely dependent on, and inversely proportional to, the donor strength of the axial ligands. Surveying the continuous shape measure and the X1-Gd-X2 angle of the complexes showed that there is some correlation between the proximity of each complex to D5h symmetry and the magnitude of the B65 parameter, but that the deformation of the X1-Gd-X2 angle is more significant than other distortions. Finally, the magnitude of B20 was found to be inversely proportional to the thermal barrier for the reversal of the magnetic moment (Ueff) of the corresponding isostructural Dy3+ complexes.

5.
Dalton Trans ; 52(8): 2412-2423, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36723225

RESUMEN

The reactivity of two different phosphate esters has been explored with calcium ions. The reaction of calcium oxide with a mixture of mono/bis 2-ethylhexyl phosphate and 1,10-phenanthroline leads to the formation of the 1-D polymer [(phen)Ca(ehpH)2]n (1). On the other hand, the reaction of Ca(OAc)2 with trimethyl phosphate in the presence of 1,10-phenanthroline however yields needle-shaped colourless crystals of [(phen)Ca(OAc)2]n (2). Compounds 1 and 2 have been characterized by various spectroscopic and analytical techniques. The solid-state structures have been determined by single crystal X-ray diffraction studies. The arrangement of rigid and flexible parts in 1 makes it an interesting compound to be studied for its thermal behaviour. DSC experiments performed above and below room temperature reveal thermal transitions in both the ranges, where below room temperature transition is prominent. A combination of variable temperature powder and single crystal X-ray diffraction experiments provides further insights into these transitions. Solid-state bulk thermolysis of 1 at 500 °C leads to an amorphous material contaminated with graphitic carbon which upon further heating to 600 °C produces crystalline α-Ca(PO3)2.

6.
IUCrdata ; 7(Pt 8): x220793, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36340978

RESUMEN

In the V-shaped title Schiff base, C41H50N2O4, the planes of the benzene rings of the central di-phenyl-methane unit make a dihedral angle of 70.40 (5)°, whereas the planes of the neighbouring benzene and ortho-vanilin rings are twisted with respect to one another by dihedral angles of 75.76 (5) and 73.89 (6)°. The Schiff base displays intra-molecular O-H⋯N hydrogen bonds and weak inter-molecular C-H⋯O contacts.

7.
Inorg Chem ; 61(18): 6807-6818, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35473360

RESUMEN

The reaction of alkali metal acetates, M(OAc)·nH2O (M = Li, Na, K), with thermally and hydrolytically unstable di-tert-butylphosphate ((tBuO)2PO2H, dtbp-H) in a 1:1 molar ratio in MeOH at room temperature leads to clean formation of group 1 metal phosphates [Li(µ-dtbp)]n (1), [Na(µ-dtbp)]n (2), and [K4(µ-dtbp)4(µ-H2O)3]n (3). All three compounds are essentially M/L 1:1 complexes. Owing to the presence of larger potassium ions, additional coordinated water molecules are found in 3, which has been further employed as a precursor for the synthesis of a mixed-metal phosphate polymer [CaK(µ-H2O)3(µ-dtbp)3]n (4) by reacting 3 with Ca(OAc)2. Compounds 1-4 have been characterized by various analytical and spectroscopic techniques. Molecular structures of 1-4 have been established in the solid state by single-crystal X-ray diffraction studies, which reveal them to be one-dimensional polymers, where the adjacent metal centers are connected through -O-P-O- bridges formed by the dtbp ligand. These complexes are rare examples of analytically pure alkali metal alkyl phosphates bearing no additional N-donor ligands (other than dtbp ligands, only water molecules are coordinated to the metal centers). Therefore, these compounds can be employed as single-source precursors (SSPs) for nano-sized ceramic phosphates. The thermogravimetric analysis of 1-4 reveals the loss of thermally labile tert-butyl substituents of the organophosphate ligands to form organic-free phosphate materials in the temperature range 300-500 °C. Solvothermal decomposition of 1-3 in boiling toluene leads to the formation of corresponding dihydrogen phosphates M(H2PO4) (M = Li, Na, and K). The thermal decomposition of heterometallic 4 in the temperature range 400-800 °C leads to the formation of phase-pure mixed-metal calcium potassium metaphosphate CaK(PO3)3.

8.
Chemistry ; 28(4): e202103585, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34788493

RESUMEN

Precise control of the crystal field and symmetry around the paramagnetic spin centre has recently facilitated the engineering of high-temperature single-ion magnets (SIMs), the smallest possible units for future spin-based devices. In the present work, we report a series of air-stable seven coordinate Dy(III) SIMs {[L2 Dy(H2 O)5 ][X]3 ⋅L2 ⋅n(H2 O), n = 0, X = Cl (1), n=1, X = Br (2), I (3)} possessing pseudo-D5h symmetry or pentagonal bipyramidal coordination geometry with high anisotropy energy barrier (Ueff ) and blocking temperature (TB ). While the strong axial coordination from the sterically encumbered phosphonamide, t BuPO(NHi Pr)2 (L), increases the overall anisotropy of the system, the presence of high symmetry significantly quenches quantum tunnelling of magnetization, which is the prominent deactivating factor encountered in SIMs. The energy barrier (Ueff ) and the blocking temperature (TB ) decrease in the order 3>2>1 with the change of anions from larger iodide to smaller strongly hydrogen-bonded chloride in the secondary coordination sphere, albeit the local coordination geometry and the symmetry around the Dy(III) display only slight deviations. Ab initio CASSCF/RASSI-SO/SINGLE_ANISO calculations provide deeper insights into the dynamics of magnetic relaxation in addition to the role of the secondary coordination sphere in modulating the anisotropy of the D5h systems, using diverse models. Thus, in addition to the importance of the crystal field and the symmetry to obtain high-temperature SIMs, this study also probes the significance of the secondary coordination sphere that can be tailored to accomplish novel SIMs.

9.
Angew Chem Int Ed Engl ; 60(23): 12632-12635, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915016

RESUMEN

The recent discoveries of both dicationic and monoanionic ferrocene derivatives throw light on the effect of the substituents on the C5 ring as well as the choice of redox agents and solvent system in the preparation of previously believed to be difficult synthetic targets. These oxidized and reduced forms of ferrocene are of interest to spectroscopists, magnetochemists, and theoreticians.

10.
J Colloid Interface Sci ; 585: 505-518, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33139020

RESUMEN

Electrochemical supercapacitor fabrication using heterogeneous nanocomposite is one of the most promising pathways for energy storage technology. Herein, heterostructure based nickel-molybdenum (NiO@Ni(OH)2-α-MoO3) nanocomposites have been successfully prepared on nickel foil via hydrothermal route for supercapacitor application. The mixed phases of cubic, hexagonal, and orthorhombic crystal structure for NiO, Ni(OH)2, and α-MoO3, respectively were observed by X-ray diffraction. Heterostructures of nanosheet and nanosphere morphologies were confirmed by high resolution transmission electron microscopy. Impressively, the NiO@Ni(OH)2-α-MoO3 composite working electrode exhibits a high specific capacitance of 445 Fg-1 at current density of 1 Ag-1 and shows outstanding rate capability (97.3% capacity retention after 3000 cycles at 10 Ag-1), compared to that of NiO@Ni(OH)2 nanoparticles. Notably, two-electrode symmetric supercapacitor of NiO@Ni(OH)2-α-MoO3 working electrode shows a high specific capacitance of 172 Fg-1 at 0.5 Ag-1, excellent rate capability and good cycling stability. Also, an excellent cycling stability (capacity retention of 98% after 5000 cycles) is observed for NiO@Ni(OH)2-α-MoO3 as a working electrode in the symmetric two-electrode system. The obtained attractive results demonstrate that nanocomposite anode material can be used for development of a wide-range of energy storage devices.

11.
Chem Commun (Camb) ; 56(79): 11879-11882, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33021294

RESUMEN

The effect of systematic modification of the axial ligand field X on Ueff values in Yb(iii)-based SIMs, [Yb(Ph3PO)4X2]X' (X, X' = NO3 (1), OTf (2) and X = I/Br/Cl; X' = I3 (3)), whose equatorial Ph3PO ligation remains unchanged, has been investigated. Combined magnetic studies coupled with ab initio calculations reveal weakening of the axial ligand fields leading to the increase in the energy barrier, apart from suggesting the operation of different relaxation pathways.

12.
Inorg Chem ; 59(18): 13233-13244, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32892621

RESUMEN

Thermally and hydrolytically unstable di-tert-butyl phosphate (dtbp-H) has been used as synthon to prepare discrete and polymeric calcium phosphates that are convenient single-source precursors for a range of calcium phosphate ceramic biomaterials. The reactivity of dtbp-H toward two different calcium sources has been found to vary significantly, e.g., the reaction of Ca(OMe)2 with dtbp-H in a 1:6 molar ratio in petroleum ether forms a mononuclear calcium hexa-phosphate complex [Ca(dtbp)2(dtbp-H)4] (1), whereas the change of calcium source to CaH2, in a 1:2 molar ratio under otherwise similar reaction conditions, yields the calcium phosphate polymer, [Ca(µ-dtbp)2(H2O)2·H2O]n(2). Compounds 1 and 2 have been extensively characterized by various spectroscopic and analytical techniques. The solid-state structures of both 1 and 2 have been determined by single-crystal X-ray diffraction studies. In discrete molecule 1, the central calcium ion is surrounded by two anionic dtbp and four neutral dtbp-H ligands in an octahedral coordination environment. Compound 2 is a one-dimensional polymer in which adjacent calcium ions are connected through double dtbp bridges. Solid-state thermolysis of bulk 1 in air leads to the exclusive formation of calcium metaphosphate ß-Ca(PO3)2 in the entire temperature range of 400-800 °C. Thermal decomposition of polymer 2, however, can be fine-tuned to produce either α-Ca(PO3)2 or ß-Ca(PO3)2 depending on the thermolysis conditions employed. Although the sample sintered at 600 °C produces exclusively α-form of Ca(PO3)2, the sample annealed at 800 °C or above produces ß-form. Both α- and ß-forms can also be successively formed one after other by a slow heating of a freshly prepared 2 on the powder diffractometer sample holder. Additional forms of ceramic phosphates have been prepared by solvothermal conditions because of the highly labile nature of the tert-butoxy groups of dtbp in 1 and 2. Solution decomposition of either 1 or 2 in boiling toluene at 140 °C in a sealed tube produces calcium dihydrogen phosphate [Ca(H2PO4)2·H2O] as the only product in the form of single crystals. Solution thermolysis of 2 in protic solvents such as water and methanol can be biased to produce other calcium phosphate biomaterials such as hydroxyapatite [Ca10(PO4)6(OH)2]and calcium monohydrogen phosphate [Ca(HPO4)] in the presence of additional calcium precursors such as CaO and Ca(OMe)2, respectively.

13.
Small ; 16(12): e1903334, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31523910

RESUMEN

Compositional interplay of two different cobalt phosphates (Co(H2 PO4 )2 ; Co-DP and Co(PO3 )2 ; Co-MP) loaded on morphologically engineered high surface area nanocarbon leads to an increased electrocatalytic efficiency for oxygen evolution reaction (OER) in near neutral conditions. This is reflected as significant reduction in the onset overpotential (301 mV) and enhanced current density (30 mA cm-2 @ 577 mV). In order to achieve uniform surface loading, organic-soluble thermolabile cobalt-bis(di-tert-butylphosphate) is synthesized in situ inside the nanocarbon matrix and subsequently pyrolyzed at 150 °C to produce Co(H2 PO4 )2 /Co(PO3 )2 (80:20 wt%). Annealing this sample at 200 or 250 °C results in the redistribution of the two phosphate systems to 55:45 or 20:80 (wt%), respectively. Detailed electrochemical measurements clearly establish that the 55:45 (wt%) sample prepared at 200 °C performs the best as a catalyst, owing to a relay mechanism that enhances the kinetics of the 4e- transfer OER process, which is substantiated by micro-Raman spectroscopic studies. It is also unraveled that the engineered nanocarbon support simultaneously enhances the interfacial charge-transfer pathway, resulting in the reduction of onset overpotential, compared to earlier investigated cobalt phosphate systems.

14.
Inorg Chem ; 59(1): 717-729, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31829583

RESUMEN

Single-ion magnets based on lanthanide ions in pseudo-D5h symmetry have gained much attention in recent years as they are reported to possess a large blocking temperature and a large barrier for magnetization reversal. Magneto-structural correlations reveal that the axial O-Ln-O angle is an important parameter to control the barrier, and while it can be fine-tuned by chemical modification, an alternative would be to utilize hydrostatic pressure. Herein, we report the crystal structures and static magnetic properties of two air-stable isostructural lanthanide SIMs under applied pressures. The complexes exhibit pseudo-D5h symmetry around the Ln(III)-ion (Ln = Dy or Ho), which coordinates to five equatorial water molecules and two large neutral phosphonic diamide ligands along the axial direction. High-pressure single-crystal X-ray diffraction experiments revealed two phase-transitions and an increasing deviation from D5h-symmetry between ambient pressure and 3.6 GPa. High-pressure direct-current magnetic measurements of the Dy(III) compound showed large steps in the hysteresis loops near zero field, indicative of quantum tunneling of magnetization (QTM). These steps grow in size with increasing pressure, suggesting that QTM becomes progressively more active, which correlates well with the pressure-induced increased overall deviation from pseudo-D5h symmetry and decreasing axial O-Dy-O angle. A strong temperature dependence of the step size is seen at 0.3 GPa, which shows that the SMM character persists even at this pressure. To understand the origin of significant variation in the tunneling probability upon pressure, we performed a range of ab initio calculations based on the CASSCF/RASSI-SO/SINGLE_ANISO method on both Dy and Ho complexes. From the energies and magnetic anisotropy of the mJ sublevels, we find a complex variation of the energy barrier with pressure, and using a constructed geometrical parameter, R, taking into account changes in both bond angles and distances, we link the magnetic properties to the first coordination sphere of the molecules.

15.
Angew Chem Int Ed Engl ; 58(47): 16844-16849, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31518046

RESUMEN

Manipulation of low-dimensional solids through soft chemical routes is an elegant way to realize newer materials. A new family of single-crystalline transition-metal layered organophosphates, with about 185 000 metal phosphate layers in a single crystal, can be exfoliated to a single-layer nanosheet by a facile and rapid solvent assisted method. This exfoliation aids the formation of high-surface-area pyrophosphates with enhanced supercapacitance.

16.
Dalton Trans ; 48(42): 15928-15935, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31513208

RESUMEN

Herein, we present monometallic Ln(iii) complexes [L3Ln(NO3)3] [where Ln = Ce (1) and La (2)] assembled from a simple reaction of the respective lanthanide nitrate hydrate and a bulky phosphonic diamide tBuPO(NHiPr)2 ligand (L), where complex 1 behaves as a single-ion single-electron magnet under a small applied magnetic field. The Ce(iii) ion occupies a nine-coordinate distorted muffin-like coordination environment. The combination of direct and Raman process dominates the relaxation dynamics in 1 under the applied dc field. The low-temperature measurements performed with oriented crystals on a micro-SQUID setup exhibits strong tunnelling at zero-field, consistent with the theoretical results where strong mixing of the ground state with higher excited mJ levels is detected and also throws additional insights on the relaxation dynamics of 1. Ab initio calculations have been performed to understand the origin of anisotropy and models have been proposed for future directions.

17.
ACS Omega ; 4(5): 9241-9250, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460014

RESUMEN

We report an easily recoverable and reusable versatile magnetic catalyst (Fe3O4@CS_AgNi, where CS = chitosan) for organic reduction reactions. The catalytic system is prepared by dispersing AgNi bimetallic nanoparticles on the magnetite core-shell (Fe3O4@CS). The as-synthesized catalyst has been characterized by spectroscopic techniques, such as IR, UV-vis, and X-ray photoelectron spectroscopy (XPS), and analytical tools, such as thermogravimetric analysis, powder X-ray diffraction, Brunauer-Emmett-Teller adsorption, FEG-scanning electron microscopy, high-resolution transmission electron microscopy (HR-TEM), inductively coupled plasma-atomic emission spectroscopy, and magnetic measurements. HR-TEM studies indicate the core-shell structure of Fe3O4@CS and confirm the presence of AgNi nanoparticles on the surface of Fe3O4@CS spheres. IR spectral and XPS studies lend evidence for the occurrence of a strong chemical interaction between the amino groups of CS and AgNi nanoparticles. The nano-catalyst Fe3O4@CS_AgNi rapidly reduces p-nitrophenol to p-aminophenol using NaBH4 as the reductant within a few minutes under ambient conditions (as monitored by UV-visible spectroscopy). The utility of this catalytic system has also been extended to the reduction of other nitroarenes. A strong interaction between Fe3O4@CS and AgNi nanoparticles impedes the leaching of AgNi nanoparticles from the core-shell support, leading to excellent reusability of the catalyst.

18.
Chem Commun (Camb) ; 55(55): 7994-7997, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31225572

RESUMEN

Modulation of a functional group on the distal part of a phosphate ester has been prudently exploited to selectively switch between the formation of D4R SBUs and 3-D framework structures. While amino substitution at the para-position of an aryl phosphate results in the isolation of tetra-amino functionalized discrete D4R zinc phosphate or its 4-connected 3-D framework, the introduction of an acetylamino substituent leads to a single-step assembly of a rare eight-connected 3-D framework solid.

19.
Inorg Chem ; 57(13): 7644-7654, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29906112

RESUMEN

The reaction of [Cp*TiCl3] (Cp* = C5Me5) with monoalkyl phosphates (RO)PO3H2 (R = Me, Et, and iPr) in tetrahydrofuran (THF) at 25 °C leads to the formation of binuclear complexes [Cp*2Ti2(µ-O2P(OH)OR)2(µ-O2P(O)OR)2] [R = Me (1), Et (2), and iPr (3)]. On the other hand, the reaction of ( tBuO)2PO2K with [Cp*TiCl3] in acetonitrile or THF results in isolation of either the dinuclear [Cp*2Ti2(µ-O2P(OH)O tBu)2(µ-O2P(O)O tBu)2] (4) or the trinuclear titanophosphate [Cp*3Ti3(µ-O3PO tBu)2(µ-O)2(µ-O2P(O tBu)2)] (5), respectively. The formation of compounds 4 and 5 is facilitated by partial hydrolysis of the tert-butoxy groups of ( tBuO)2PO2K. New titanophosphates 1-5 have been characterized by spectroscopic and analytical methods, and the molecular structures have further been confirmed by single-crystal X-ray diffraction studies. Thermal decomposition studies of 1-5 reveal the initial loss of thermally labile alkyl substituents of the organophosphate ligands, followed by the loss of C5Me5 groups to form an organic-free amorphous titanophosphate in the temperature range 300-500 °C. This material transforms to highly crystalline titanium pyrophosphate TiP2O7 at 800 °C. Compounds 1-5 and the TiP2O7 materials obtained at 300, 500, and 800 °C through the thermal decomposition of 3 have been employed as efficient homogeneous catalysts for the alkene epoxidation reaction. Using hydrogen peroxide as the oxidant in an acetonitrile medium, these catalysts exhibit >90% alkene conversion with >90% epoxide selectivity in 4 h at temperatures below 100 °C.

20.
Chem Commun (Camb) ; 54(30): 3685-3696, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29564454

RESUMEN

Rapidly growing modern information technology demands energy and cost efficient tools that can efficiently store and process a large amount of data. However, the miniaturization technology that was being used to boost the performance of the electronic devices, keeping up with the pace as estimated by Moore's law, is reaching its limit. To overcome these challenges, several alternative routes that can eventually mimic the modern electronics fabrication using silicon have been proposed. Single molecule magnets (SMMs), being considered as one of the potential alternatives, have gone through significant progress and the focus has shifted from the use of polynuclear clusters to mononuclear complexes in the last few years. The recent frenzy in the field of SMMs is driven by a better understanding of the effects of crystal field (CF) and molecular symmetry on the magnetic properties, especially in the case of mononuclear paramagnetic complexes, apart from other controlling factors. This has led to the advent of highly anisotropic single-ion magnets (SIMs) with magnetic blocking temperatures as high as 60 K and anisotropic energy barriers over 1800 K. This article overviews our recent research in the light of the emergence of the importance of CF and symmetry in 4f ion based single-ion magnets (SIMs), especially in the context of SIMs with D5h symmetry, apart from commenting on the synthetic efforts adopted to place these metal ions in unusual coordination geometries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...