Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(23): e114473, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37872872

RESUMEN

The microtubule motor dynein mediates polarised trafficking of a wide variety of organelles, vesicles and macromolecules. These functions are dependent on the dynactin complex, which helps recruit cargoes to dynein's tail and activates motor movement. How the dynein-dynactin complex orchestrates trafficking of diverse cargoes is unclear. Here, we identify HEATR5B, an interactor of the adaptor protein-1 (AP1) clathrin adaptor complex, as a novel player in dynein-dynactin function. HEATR5B was recovered in a biochemical screen for proteins whose association with the dynein tail is augmented by dynactin. We show that HEATR5B binds directly to the dynein tail and dynactin and stimulates motility of AP1-associated endosomal membranes in human cells. We also demonstrate that the Drosophila HEATR5B homologue is an essential gene that selectively promotes dynein-based transport of AP1-bound membranes to the Golgi apparatus. As HEATR5B lacks the coiled-coil architecture typical of dynein adaptors, our data point to a non-canonical process orchestrating motor function on a specific cargo. We additionally show that HEATR5B promotes association of AP1 with endosomal membranes independently of dynein. Thus, HEATR5B co-ordinates multiple events in AP1-based trafficking.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Humanos , Dineínas/metabolismo , Complejo Dinactina/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte Biológico/fisiología , Microtúbulos/metabolismo , Endosomas/metabolismo
2.
PLoS Biol ; 21(8): e3002222, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552676

RESUMEN

The human genome encodes approximately 20,000 proteins, many still uncharacterised. It has become clear that scientific research tends to focus on well-studied proteins, leading to a concern that poorly understood genes are unjustifiably neglected. To address this, we have developed a publicly available and customisable "Unknome database" that ranks proteins based on how little is known about them. We applied RNA interference (RNAi) in Drosophila to 260 unknown genes that are conserved between flies and humans. Knockdown of some genes resulted in loss of viability, and functional screening of the rest revealed hits for fertility, development, locomotion, protein quality control, and resilience to stress. CRISPR/Cas9 gene disruption validated a component of Notch signalling and 2 genes contributing to male fertility. Our work illustrates the importance of poorly understood genes, provides a resource to accelerate future research, and highlights a need to support database curation to ensure that misannotation does not erode our awareness of our own ignorance.


Asunto(s)
Drosophila , Fertilidad , Animales , Masculino , Humanos , Drosophila/genética , Interferencia de ARN , Fertilidad/genética
3.
Curr Biol ; 32(21): 4549-4564.e6, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36103876

RESUMEN

The Golgi is the central sorting station in the secretory pathway and thus the destination of transport vesicles arriving from the endoplasmic reticulum and endosomes and from within the Golgi itself. Cell viability, therefore, requires that the Golgi accurately receives multiple classes of vesicle. One set of proteins proposed to direct vesicle arrival at the Golgi are the golgins, long coiled-coil proteins localized to specific parts of the Golgi stack. In mammalian cells, three of the golgins, TMF, golgin-84, and GMAP-210, can capture intra-Golgi transport vesicles when placed in an ectopic location. However, the individual golgins are not required for cell viability, and mouse knockout mutants only have defects in specific tissues. To further illuminate this system, we examine the Drosophila orthologs of these three intra-Golgi golgins. We show that ectopic forms can capture intra-Golgi transport vesicles, but strikingly, the cargo present in the vesicles captured by each golgin varies between tissues. Loss-of-function mutants show that the golgins are individually dispensable, although the loss of TMF recapitulates the male fertility defects observed in mice. However, the deletion of multiple golgins results in defects in glycosylation and loss of viability. Examining the vesicles captured by a particular golgin when another golgin is missing reveals that the vesicle content in one tissue changes to resemble that of a different tissue. This reveals a plasticity in Golgi organization between tissues, providing an explanation for why the Golgi is sufficiently robust to tolerate the loss of many of the individual components of its membrane traffic machinery.


Asunto(s)
Drosophila , Aparato de Golgi , Masculino , Ratones , Animales , Proteínas de la Matriz de Golgi/genética , Proteínas de la Matriz de Golgi/metabolismo , Drosophila/genética , Drosophila/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Retículo Endoplásmico/metabolismo , Mamíferos
4.
Acta Neuropathol Commun ; 7(1): 200, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31806024

RESUMEN

Damage to axonal transport is an early pathogenic event in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo since disruption to APP transport promotes amyloidogenic processing of APP. Moreover, altered APP processing itself disrupts axonal transport. The mechanisms that regulate axonal transport of APP are therefore directly relevant to Alzheimer's disease pathogenesis. APP is transported anterogradely through axons on kinesin-1 motors and one route for this transport involves calsyntenin-1, a type-1 membrane spanning protein that acts as a direct ligand for kinesin-1 light chains (KLCs). Thus, loss of calsyntenin-1 disrupts APP axonal transport and promotes amyloidogenic processing of APP. Phosphorylation of KLC1 on serine-460 has been shown to reduce anterograde axonal transport of calsyntenin-1 by inhibiting the KLC1-calsyntenin-1 interaction. Here we demonstrate that in Alzheimer's disease frontal cortex, KLC1 levels are reduced and the relative levels of KLC1 serine-460 phosphorylation are increased; these changes occur relatively early in the disease process. We also show that a KLC1 serine-460 phosphomimetic mutant inhibits axonal transport of APP in both mammalian neurons in culture and in Drosophila neurons in vivo. Finally, we demonstrate that expression of the KLC1 serine-460 phosphomimetic mutant promotes amyloidogenic processing of APP. Together, these results suggest that increased KLC1 serine-460 phosphorylation contributes to Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Transporte Axonal/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Serina/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/análisis , Precursor de Proteína beta-Amiloide/genética , Animales , Proteínas de Drosophila , Drosophila melanogaster , Femenino , Lóbulo Frontal/química , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Células HEK293 , Humanos , Cinesinas , Masculino , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Fosforilación/fisiología , Ratas , Serina/análisis , Serina/genética
5.
Curr Biol ; 28(8): R374-R376, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689216
6.
J Cell Biol ; 217(4): 1233-1248, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500190

RESUMEN

Centrioles are highly structured organelles whose size is remarkably consistent within any given cell type. New centrioles are born when Polo-like kinase 4 (Plk4) recruits Ana2/STIL and Sas-6 to the side of an existing "mother" centriole. These two proteins then assemble into a cartwheel, which grows outwards to form the structural core of a new daughter. Here, we show that in early Drosophila melanogaster embryos, daughter centrioles grow at a linear rate during early S-phase and abruptly stop growing when they reach their correct size in mid- to late S-phase. Unexpectedly, the cartwheel grows from its proximal end, and Plk4 determines both the rate and period of centriole growth: the more active the centriolar Plk4, the faster centrioles grow, but the faster centriolar Plk4 is inactivated and growth ceases. Thus, Plk4 functions as a homeostatic clock, establishing an inverse relationship between growth rate and period to ensure that daughter centrioles grow to the correct size.


Asunto(s)
Centriolos/enzimología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Animales , Conducta Animal , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/enzimología , Homeostasis , Locomoción , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Transducción de Señal , Factores de Tiempo
7.
J Cell Biol ; 217(2): 601-617, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29273580

RESUMEN

Originally identified in yeast, transport protein particle (TRAPP) complexes are Rab GTPase exchange factors that share a core set of subunits. TRAPPs were initially found to act on Ypt1, the yeast orthologue of Rab1, but recent studies have found that yeast TRAPPII can also activate the Rab11 orthologues Ypt31/32. Mammals have two TRAPP complexes, but their role is less clear, and they contain subunits that are not found in the yeast complexes but are essential for cell growth. To investigate TRAPP function in metazoans, we show that Drosophila melanogaster have two TRAPP complexes similar to those in mammals and that both activate Rab1, whereas one, TRAPPII, also activates Rab11. TRAPPII is not essential but becomes so in the absence of the gene parcas that encodes the Drosophila orthologue of the SH3BP5 family of Rab11 guanine nucleotide exchange factors (GEFs). Thus, in metazoans, Rab1 activation requires TRAPP subunits not found in yeast, and Rab11 activation is shared by TRAPPII and an unrelated GEF that is metazoan specific.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales
8.
G3 (Bethesda) ; 5(7): 1493-502, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25999583

RESUMEN

The Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR associated (CRISPR/Cas) technology allows rapid, site-specific genome modification in a wide variety of organisms . Proof-of-principle studies in Drosophila melanogaster have used various CRISPR/Cas tools and experimental designs, leading to significant uncertainty in the community about how to put this technology into practice. Moreover, it is unclear what proportion of genomic target sites can be modified with high efficiency. Here, we address these issues by systematically evaluating available CRISPR/Cas reagents and methods in Drosophila. Our findings allow evidence-based choices of Cas9 sources and strategies for generating knock-in alleles. We perform gene editing at a large number of target sites using a highly active Cas9 line and a collection of transgenic gRNA strains. The vast majority of target sites can be mutated with remarkable efficiency using these tools. We contrast our method to recently developed autonomous gene drive technology for somatic and germline genome engineering and conclude that optimized CRISPR with independent transgenes is as efficient, more versatile, and does not represent a biosafety risk.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Drosophila/genética , Alelos , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Técnicas de Sustitución del Gen , Células Germinativas , Mutagénesis , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
9.
Elife ; 4: e07236, 2015 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-26002084

RESUMEN

Sas-6 and Ana2/STIL proteins are required for centriole duplication and the homo-oligomerisation properties of Sas-6 help establish the ninefold symmetry of the central cartwheel that initiates centriole assembly. Ana2/STIL proteins are poorly conserved, but they all contain a predicted Central Coiled-Coil Domain (CCCD). Here we show that the Drosophila Ana2 CCCD forms a tetramer, and we solve its structure to 0.8 Å, revealing that it adopts an unusual parallel-coil topology. We also solve the structure of the Drosophila Sas-6 N-terminal domain to 2.9 Å revealing that it forms higher-order oligomers through canonical interactions. Point mutations that perturb Sas-6 or Ana2 homo-oligomerisation in vitro strongly perturb centriole assembly in vivo. Thus, efficient centriole duplication in flies requires the homo-oligomerisation of both Sas-6 and Ana2, and the Ana2 CCCD tetramer structure provides important information on how these proteins might cooperate to form a cartwheel structure.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Multimerización de Proteína , Animales , Cristalografía por Rayos X , Análisis Mutacional de ADN , Mutación Puntual , Conformación Proteica
10.
Elife ; 2: e01071, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24052813

RESUMEN

Centrioles organise centrosomes and template cilia and flagella. Several centriole and centrosome proteins have been linked to microcephaly (MCPH), a neuro-developmental disease associated with small brain size. CPAP (MCPH6) and STIL (MCPH7) are required for centriole assembly, but it is unclear how mutations in them lead to microcephaly. We show that the TCP domain of CPAP constitutes a novel proline recognition domain that forms a 1:1 complex with a short, highly conserved target motif in STIL. Crystal structures of this complex reveal an unusual, all-ß structure adopted by the TCP domain and explain how a microcephaly mutation in CPAP compromises complex formation. Through point mutations, we demonstrate that complex formation is essential for centriole duplication in vivo. Our studies provide the first structural insight into how the malfunction of centriole proteins results in human disease and also reveal that the CPAP-STIL interaction constitutes a conserved key step in centriole biogenesis. DOI:http://dx.doi.org/10.7554/eLife.01071.001.


Asunto(s)
Centriolos , Péptidos y Proteínas de Señalización Intracelular/química , Microcefalia/fisiopatología , Proteínas Asociadas a Microtúbulos/química , Sitios de Unión , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Mutación Puntual , Prolina/química , Conformación Proteica
11.
J Cell Sci ; 124(Pt 21): 3715-25, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22025631

RESUMEN

Photoreceptor morphogenesis in Drosophila requires remodelling of apico-basal polarity and adherens junctions (AJs), and includes cell shape changes, as well as differentiation and expansion of the apical membrane. The evolutionarily conserved transmembrane protein Crumbs (Crb) organises an apical membrane-associated protein complex that controls photoreceptor morphogenesis. Expression of the small cytoplasmic domain of Crb in crb mutant photoreceptor cells (PRCs) rescues the crb mutant phenotype to the same extent as the full-length protein. Here, we show that overexpression of the membrane-tethered cytoplasmic domain of Crb in otherwise wild-type photoreceptor cells has major effects on polarity and morphogenesis. Whereas early expression causes severe abnormalities in apico-basal polarity and ommatidial integrity, expression at later stages affects the shape and positioning of AJs. This result supports the importance of Crb for junctional remodelling during morphogenetic changes. The most pronounced phenotype observed upon early expression is the formation of ectopic apical membrane domains, which often develop into a complete second apical pole, including ectopic AJs. Induction of this phenotype requires members of the Par protein network. These data point to a close integration of the Crb complex and Par proteins during photoreceptor morphogenesis and underscore the role of Crb as an apical determinant.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Ojo/embriología , Proteínas de la Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Animales , Polaridad Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ojo/metabolismo , Proteínas de la Membrana/genética , Estructura Terciaria de Proteína , Pupa/genética , Pupa/metabolismo
12.
Eur J Cell Biol ; 88(12): 765-77, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19717208

RESUMEN

Morphogenesis of Drosophila photoreceptor cells includes the subdivision of the apical membrane into the photosensitive rhabdomere and the associated stalk membrane, as well as a considerable elongation of the cell. Drosophila Crumbs (Crb), an evolutionarily conserved transmembrane protein, organizes an apical protein scaffold, which is required for elongation of the photoreceptor cell and extension of the stalk membrane. To further elucidate the role played by different Crb domains during eye morphogenesis, we performed a structure-function analysis in the eye. The analysis showed that the three variants tested, namely full-length Crb, the membrane-bound intracellular domain and the extracellular domain were able to rescue the elongation defects of crb mutant rhabdomeres. However, only full-length Crb and the membrane-bound intracellular domain could partially restore the length of the stalk membrane, while the extracellular domain failed to do so. This failure was associated with the inability of the extracellular domain to recruit beta(Heavy)-spectrin to the stalk membrane. These results highlight the functional importance of the extracellular domain of Crb in the Drosophila eye. They are in line with previous observations, which showed that mutations in the extracellular domain of human CRB1 are associated with retinitis pigmentosa 12 and Leber congenital amaurosis, two severe forms of retinal dystrophy.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Proteínas de la Membrana/fisiología , Células Fotorreceptoras/fisiología , Animales , Sitios de Unión , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Morfogénesis , Células Fotorreceptoras/metabolismo , Unión Proteica , Espectrina/genética , Espectrina/metabolismo , Espectrina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...