Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Stat Data Sci Educ ; 31(1): 57-65, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207236

RESUMEN

Data science and informatics tools are developing at a blistering rate, but their users often lack the educational background or resources to efficiently apply the methods to their research. Training resources and vignettes that accompany these tools often deprecate because their maintenance is not prioritized by funding, giving teams little time to devote to such endeavors. Our group has developed Open-source Tools for Training Resources (OTTR) to offer greater efficiency and flexibility for creating and maintaining these training resources. OTTR empowers creators to customize their work and allows for a simple workflow to publish using multiple platforms. OTTR allows content creators to publish training material to multiple massive online learner communities using familiar rendering mechanics. OTTR allows the incorporation of pedagogical practices like formative and summative assessments in the form of multiple choice questions and fill in the blank problems that are automatically graded. No local installation of any software is required to begin creating content with OTTR. Thus far, 15 training courses have been created with OTTR repository template. By using the OTTR system, the maintenance workload for updating these courses across platforms has been drastically reduced. For more information about OTTR and how to get started, go to ottrproject.org.

2.
Neuroimage ; 271: 120037, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36931330

RESUMEN

Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.


Asunto(s)
Sustancia Blanca , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Programas Informáticos , Proyectos de Investigación , Modelos Estadísticos
3.
Transl Lung Cancer Res ; 11(6): 1009-1018, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35832450

RESUMEN

Background: Lung cancer remains the leading cause of cancer deaths accounting for almost 25% of all cancer deaths. Breath-based volatile organic compounds (VOCs) have been studied in lung cancer but previous studies have numerous limitations. We conducted a prospective matched case to control study of the ability of preidentified VOC performance in the diagnosis of stage 1 lung cancer (S1LC). Methods: Study participants were enrolled in a matched case to two controls study. A case was defined as a patient with biopsy-confirmed S1LC. Controls included a matched control, by risk factors, and a housemate control who resided in the same residence as the case. We included 88 cases, 88 risk-matched, and 49 housemate controls. Each participant exhaled into a Tedlar® bag which was analyzed using gas chromatography-mass spectrometry. For each study participant's breath sample, the concentration of thirteen previously identified VOCs were quantified and assessed using area under the curve in the detection of lung cancer. Results: Four VOCs were above the limit of detection in more than 10% of the samples. Acetoin was the only compound that was significantly associated with S1LC. Acetoin concentration below the 10th percentile (0.026 µg/L) in the training data had accuracy of 0.610 (sensitivity =0.649; specificity =0.583) in the test data. In multivariate logistic models, the best performing models included Acetoin alone (AUC =0.650). Conclusions: Concentration of Acetoin in exhaled breath has low discrimination performance for S1LC cases and controls, while there was not enough evidence for twelve additional published VOCs.

4.
JMIR Mhealth Uhealth ; 10(7): e38077, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867392

RESUMEN

BACKGROUND: Given the evolution of processing and analysis methods for accelerometry data over the past decade, it is important to understand how newer summary measures of physical activity compare with established measures. OBJECTIVE: We aimed to compare objective measures of physical activity to increase the generalizability and translation of findings of studies that use accelerometry-based data. METHODS: High-resolution accelerometry data from the Baltimore Longitudinal Study on Aging were retrospectively analyzed. Data from 655 participants who used a wrist-worn ActiGraph GT9X device continuously for a week were summarized at the minute level as ActiGraph activity count, monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity. We calculated these measures using open-source packages in R. Pearson correlations between activity count and each measure were quantified both marginally and conditionally on age, sex, and BMI. Each measures pair was harmonized using nonparametric regression of minute-level data. RESULTS: Data were from a sample (N=655; male: n=298, 45.5%; female: n=357, 54.5%) with a mean age of 69.8 years (SD 14.2) and mean BMI of 27.3 kg/m2 (SD 5.0). The mean marginal participant-specific correlations between activity count and monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity were r=0.988 (SE 0.0002324), r=0.867 (SE 0.001841), r=0.913 (SE 0.00132), and r=0.970 (SE 0.0006868), respectively. After harmonization, mean absolute percentage errors of predicting total activity count from monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity were 2.5, 14.3, 11.3, and 6.3, respectively. The accuracies for predicting sedentary minutes for an activity count cut-off of 1853 using monitor-independent movement summary, Euclidean norm minus one, mean amplitude deviation, and activity intensity were 0.981, 0.928, 0.904, and 0.960, respectively. An R software package called SummarizedActigraphy, with a unified interface for computation of the measures from raw accelerometry data, was developed and published. CONCLUSIONS: The findings from this comparison of accelerometry-based measures of physical activity can be used by researchers and facilitate the extension of knowledge from existing literature by demonstrating the high correlation between activity count and monitor-independent movement summary (and other measures) and by providing harmonization mapping.


Asunto(s)
Acelerometría/estadística & datos numéricos , Envejecimiento/fisiología , Análisis de Datos , Ejercicio Físico/fisiología , Anciano , Femenino , Humanos , Estudios Longitudinales , Masculino , Estudios Retrospectivos
5.
J Neuroimaging ; 32(5): 968-976, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35434846

RESUMEN

BACKGROUND AND PURPOSE: Intracerebral hemorrhage (ICH) and intraventricular hemorrhage (IVH) clinical trials rely on manual linear and semi-quantitative (LSQ) estimators like the ABC/2, modified Graeb and IVH scores for timely volumetric estimation from CT. Deep learning (DL) volumetrics of ICH have recently approached the accuracy of gold-standard planimetry. However, DL and LSQ strategies have been limited by unquantified uncertainty, in particular when ICH and IVH estimates intersect. Bayesian deep learning methods can be used to approximate uncertainty, presenting an opportunity to improve quality assurance in clinical trials. METHODS: A DL model was trained to simultaneously segment ICH and IVH using diagnostic CT data from the Minimally Invasive Surgery Plus Alteplase for ICH Evacuation (MISTIE) III and Clot Lysis: Evaluating Accelerated Resolution of IVH (CLEAR) III clinical trials. Bayesian uncertainty approximation was performed using Monte-Carlo dropout. We compared the performance of our model with estimators used in the CLEAR IVH and MISTIE II trials. The reliability of planimetry, DL, and LSQ volumetrics in the setting of high ICH and IVH intersection is quantified using consensus estimates. RESULTS: Our DL model produced volume correlations and median Dice scores of .994 and .946 for ICH in MISTIE II, and .980 and .863 for IVH in CLEAR IVH, respectively, outperforming LSQ estimates from the clinical trials. We found significant linear relationships between ICH uncertainty, Dice scores (r = -.849), and relative volume difference (r = .735). CONCLUSION: In our validation clinical trial dataset, DL models with Bayesian uncertainty approximation provided superior volumetric estimates to LSQ methods with real-time estimates of model uncertainty.


Asunto(s)
Aprendizaje Profundo , Teorema de Bayes , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/cirugía , Ensayos Clínicos como Asunto , Humanos , Reproducibilidad de los Resultados , Activador de Tejido Plasminógeno/uso terapéutico
6.
Genet Epidemiol ; 46(2): 122-138, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35043453

RESUMEN

Physical inactivity (PA) is an important risk factor for a wide range of diseases. Previous genome-wide association studies (GWAS), based on self-reported data or a small number of phenotypes derived from accelerometry, have identified a limited number of genetic loci associated with habitual PA and provided evidence for involvement of central nervous system in mediating genetic effects. In this study, we derived 27 PA phenotypes from wrist accelerometry data obtained from 88,411 UK Biobank study participants. Single-variant association analysis based on mixed-effects models and transcriptome-wide association studies (TWAS) together identified 5 novel loci that were not detected by previous studies of PA, sleep duration and self-reported chronotype. For both novel and previously known loci, we discovered associations with novel phenotypes including active-to-sedentary transition probability, light-intensity PA, activity during different times of the day and proxy phenotypes to sleep and circadian patterns. Follow-up studies including TWAS, colocalization, tissue-specific heritability enrichment, gene-set enrichment and genetic correlation analyses indicated the role of the blood and immune system in modulating the genetic effects and a secondary role of the digestive and endocrine systems. Our findings provided important insights into the genetic architecture of PA and its underlying mechanisms.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Genéticos , Acelerometría , Ejercicio Físico/fisiología , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos
7.
Neuroimage ; 250: 118877, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35051581

RESUMEN

There is significant interest in adopting surface- and grayordinate-based analysis of MR data for a number of reasons, including improved whole-cortex visualization, the ability to perform surface smoothing to avoid issues associated with volumetric smoothing, improved inter-subject alignment, and reduced dimensionality. The CIFTI grayordinate file format introduced by the Human Connectome Project further advances grayordinate-based analysis by combining gray matter data from the left and right cortical hemispheres with gray matter data from the subcortex and cerebellum into a single file. Analyses performed in grayordinate space are well-suited to leverage information shared across the brain and across subjects through both traditional analysis techniques and more advanced statistical methods, including Bayesian methods. The R statistical environment facilitates use of advanced statistical techniques, yet little support for grayordinates analysis has been previously available in R. Indeed, few comprehensive programmatic tools for working with CIFTI files have been available in any language. Here, we present the ciftiTools R package, which provides a unified environment for reading, writing, visualizing, and manipulating CIFTI files and related data formats. We illustrate ciftiTools' convenient and user-friendly suite of tools for working with grayordinates and surface geometry data in R, and we describe how ciftiTools is being utilized to advance the statistical analysis of grayordinate-based functional MRI data.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Neuroimagen , Conectoma , Interpretación Estadística de Datos , Humanos , Programas Informáticos
8.
Public Health Rep ; 137(2): 197-202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34969294

RESUMEN

The public health crisis created by the COVID-19 pandemic has spurred a deluge of scientific research aimed at informing the public health and medical response to the pandemic. However, early in the pandemic, those working in frontline public health and clinical care had insufficient time to parse the rapidly evolving evidence and use it for decision-making. Academics in public health and medicine were well-placed to translate the evidence for use by frontline clinicians and public health practitioners. The Novel Coronavirus Research Compendium (NCRC), a group of >60 faculty and trainees across the United States, formed in March 2020 with the goal to quickly triage and review the large volume of preprints and peer-reviewed publications on SARS-CoV-2 and COVID-19 and summarize the most important, novel evidence to inform pandemic response. From April 6 through December 31, 2020, NCRC teams screened 54 192 peer-reviewed articles and preprints, of which 527 were selected for review and uploaded to the NCRC website for public consumption. Most articles were peer-reviewed publications (n = 395, 75.0%), published in 102 journals; 25.1% (n = 132) of articles reviewed were preprints. The NCRC is a successful model of how academics translate scientific knowledge for practitioners and help build capacity for this work among students. This approach could be used for health problems beyond COVID-19, but the effort is resource intensive and may not be sustainable in the long term.


Asunto(s)
COVID-19 , Curaduría de Datos/métodos , Difusión de la Información/métodos , Investigación Interdisciplinaria/organización & administración , Revisión de la Investigación por Pares , Preimpresos como Asunto , SARS-CoV-2 , Humanos , Salud Pública , Estados Unidos
9.
Neuroimage ; 245: 118703, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34736996

RESUMEN

Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Anciano , Algoritmos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados
10.
Open Forum Infect Dis ; 8(9): ofab448, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34584899

RESUMEN

BACKGROUND: Males experience increased severity of illness and mortality from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compared with females, but the mechanisms of male susceptibility are unclear. METHODS: We performed a retrospective cohort analysis of SARS-CoV-2 testing and admission data at 5 hospitals in the Maryland/Washington DC area. Using age-stratified logistic regression models, we quantified the impact of male sex on the risk of the composite outcome of severe disease or death (World Health Organization score 5-8) and tested the impact of demographics, comorbidities, health behaviors, and laboratory inflammatory markers on the sex effect. RESULTS: Among 213 175 SARS-CoV-2 tests, despite similar positivity rates, males in age strata between 18 and 74 years were more frequently hospitalized. For the 2626 hospitalized individuals, clinical inflammatory markers (interleukin-6, C-reactive protein, ferritin, absolute lymphocyte count, and neutrophil:lymphocyte ratio) were more favorable for females than males (P < .001). Among 18-49-year-olds, male sex carried a higher risk of severe outcomes, both early (odds ratio [OR], 3.01; 95% CI, 1.75 to 5.18) and at peak illness during hospitalization (OR, 2.58; 95% CI, 1.78 to 3.74). Despite multiple differences in demographics, presentation features, comorbidities, and health behaviors, these variables did not change the association of male sex with severe disease. Only clinical inflammatory marker values modified the sex effect, reducing the OR for severe outcomes in males aged 18-49 years to 1.81 (95% CI, 1.00 to 3.26) early and 1.39 (95% CI, 0.93 to 2.08) at peak illness. CONCLUSIONS: Higher inflammatory laboratory test values were associated with increased risk of severe coronavirus disease 2019 for males. A sex-specific inflammatory response to SARS-CoV-2 infection may underlie the sex differences in outcomes.

11.
JAMA Netw Open ; 4(7): e2116901, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34255046

RESUMEN

Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.


Asunto(s)
COVID-19 , Bases de Datos Factuales , Predicción , Hospitalización , Modelos Biológicos , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/etnología , COVID-19/mortalidad , Comorbilidad , Etnicidad , Oxigenación por Membrana Extracorpórea , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad , Pandemias , Respiración Artificial , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Estados Unidos , Adulto Joven
12.
Am J Epidemiol ; 190(10): 2094-2106, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33984860

RESUMEN

Longitudinal trajectories of vital signs and biomarkers during hospital admission of patients with COVID-19 remain poorly characterized despite their potential to provide critical insights about disease progression. We studied 1884 patients with severe acute respiratory syndrome coronavirus 2 infection from April 3, 2020, to June 25, 2020, within 1 Maryland hospital system and used a retrospective longitudinal framework with linear mixed-effects models to investigate relevant biomarker trajectories leading up to 3 critical outcomes: mechanical ventilation, discharge, and death. Trajectories of 4 vital signs (respiratory rate, ratio of oxygen saturation (Spo2) to fraction of inspired oxygen (Fio2), pulse, and temperature) and 4 laboratory values (C-reactive protein (CRP), absolute lymphocyte count (ALC), estimated glomerular filtration rate, and D-dimer) clearly distinguished the trajectories of patients with COVID-19. Before any ventilation, log(CRP), log(ALC), respiratory rate, and Spo2-to-Fio2 ratio trajectories diverge approximately 8-10 days before discharge or death. After ventilation, log(CRP), log(ALC), respiratory rate, Spo2-to-Fio2 ratio, and estimated glomerular filtration rate trajectories again diverge 10-20 days before death or discharge. Trajectories improved until discharge and remained unchanged or worsened until death. Our approach characterizes the distribution of biomarker trajectories leading up to competing outcomes of discharge versus death. Moving forward, this model can contribute to quantifying the joint probability of biomarkers and outcomes when provided clinical data up to a given moment.


Asunto(s)
Biomarcadores/metabolismo , COVID-19/metabolismo , Evaluación de Resultado en la Atención de Salud , Neumonía Viral/metabolismo , COVID-19/diagnóstico , COVID-19/epidemiología , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Maryland/epidemiología , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , Valor Predictivo de las Pruebas , Estudios Retrospectivos , SARS-CoV-2 , Signos Vitales
13.
medRxiv ; 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33948611

RESUMEN

The public health crisis created by the SARS-CoV-2 pandemic has spurred a deluge of scientific research aimed at informing public health and medical response to the COVID-19 pandemic. However, those working in frontline public health and clinical care had insufficient time to parse the rapidly evolving evidence and use it for decision making. Academics in public health and medicine were well-placed to translate the evidence for use by frontline clinicians and public health practitioners. The Novel Coronavirus Research Compendium (NCRC), a group of >50 faculty and trainees, began in March 2020 with the goal to quickly triage and review the large volume of preprints and peer-reviewed publications on SARS-CoV-2 and COVID-19, and to summarize the most important, novel evidence to inform pandemic response. From April 6, 2020 through January 1, 2021, 54,192 papers and preprints were screened by NCRC teams and 527 were selected for review and uploaded to the NCRC website for public consumption. The majority of papers reviewed were peer-reviewed publications (n=395, 75%), published in 102 journals; 25% (n=132) of papers reviewed were of preprints. The NCRC is a successful model of how academics can support practitioners by translating scientific knowledge into action and help to build capacity among students for this work. This approach could be used for health problems beyond COVID-19, but the effort is resource intensive and may not be sustainable over the long term.

14.
Neuroimage ; 237: 118141, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33962000

RESUMEN

In recent years, there has been significant criticism of functional magnetic resonance imaging (fMRI) studies with small sample sizes. The argument is that such studies have low statistical power, as well as reduced likelihood for statistically significant results to be true effects. The prevalence of these studies has led to a situation where a large number of published results are not replicable and likely false. Despite this growing body of evidence, small sample fMRI studies continue to be regularly performed; likely due to the high cost of scanning. In this report we investigate the use of a moderated t-statistic for performing group-level fMRI analysis to help alleviate problems related to small sample sizes. The proposed approach, implemented in the popular R-package LIMMA (linear models for microarray data), has found wide usage in the genomics literature for dealing with similar issues. Utilizing task-based fMRI data from the Human Connectome Project (HCP), we compare the performance of the moderated t-statistic with the standard t-statistic, as well as the pseudo t-statistic commonly used in non-parametric fMRI analysis. We find that the moderated t-test significantly outperforms both alternative approaches for studies with sample sizes less than 40 subjects. Further, we find that the results were consistent both when using voxel-based and cluster-based thresholding. We also introduce an R-package, LIMMI (linear models for medical images), that provides a quick and convenient way to apply the method to fMRI data.


Asunto(s)
Interpretación Estadística de Datos , Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos , Desempeño Psicomotor , Adulto , Conectoma , Humanos , Modelos Lineales
15.
medRxiv ; 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33851190

RESUMEN

BACKGROUND: Rates of severe illness and mortality from SARS-CoV-2 are greater for males, but the mechanisms for this difference are unclear. Understanding the differences in outcomes between males and females across the age spectrum will guide both public health and biomedical interventions. METHODS: Retrospective cohort analysis of SARS-CoV-2 testing and admission data in a health system. Patient-level data were assessed with descriptive statistics and logistic regression modeling was used to identify features associated with increased male risk of severe outcomes. RESULTS: In 213,175 SARS-CoV-2 tests, despite similar positivity rates (8.2%F vs 8.9%M), males were more frequently hospitalized (28%F vs 33%M). Of 2,626 hospitalized individuals, females had less severe presenting respiratory parameters and males had more fever. Comorbidity burden was similar, but with differences in specific conditions. Medications relevant for SARS-CoV-2 were used at similar frequency except tocilizumab (M>F). Males had higher inflammatory lab values. In a logistic regression model, male sex was associated with a higher risk of severe outcomes at 24 hours (odds ratio (OR) 3.01, 95%CI 1.75, 5.18) and at peak status (OR 2.58, 95%CI 1.78,3.74) among 18-49 year-olds. Block-wise addition of potential explanatory variables demonstrated that only the inflammatory labs substantially modified the OR associated with male sex across all ages. CONCLUSION: Higher levels of clinical inflammatory labs are the only features that are associated with the heightened risk of severe outcomes and death for males in COVID-19. TRIAL REGISTRATION: NA. FUNDING: Hopkins inHealth; COVID-19 Administrative Supplement (HHS Region 3 Treatment Center), Office of the ASPR; NIH/NCI U54CA260492 (SK), NIH/NIA U54AG062333 (SK).

16.
Sci Rep ; 11(1): 9068, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907199

RESUMEN

The Advanced Normalizations Tools ecosystem, known as ANTsX, consists of multiple open-source software libraries which house top-performing algorithms used worldwide by scientific and research communities for processing and analyzing biological and medical imaging data. The base software library, ANTs, is built upon, and contributes to, the NIH-sponsored Insight Toolkit. Founded in 2008 with the highly regarded Symmetric Normalization image registration framework, the ANTs library has since grown to include additional functionality. Recent enhancements include statistical, visualization, and deep learning capabilities through interfacing with both the R statistical project (ANTsR) and Python (ANTsPy). Additionally, the corresponding deep learning extensions ANTsRNet and ANTsPyNet (built on the popular TensorFlow/Keras libraries) contain several popular network architectures and trained models for specific applications. One such comprehensive application is a deep learning analog for generating cortical thickness data from structural T1-weighted brain MRI, both cross-sectionally and longitudinally. These pipelines significantly improve computational efficiency and provide comparable-to-superior accuracy over multiple criteria relative to the existing ANTs workflows and simultaneously illustrate the importance of the comprehensive ANTsX approach as a framework for medical image analysis.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Ecosistema , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Programas Informáticos
17.
PLoS One ; 16(4): e0248560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33793578

RESUMEN

Continuous Glucose Monitoring (CGM) data play an increasing role in clinical practice as they provide detailed quantification of blood glucose levels during the entire 24-hour period. The R package iglu implements a wide range of CGM-derived metrics for measuring glucose control and glucose variability. The package also allows one to visualize CGM data using time-series and lasagna plots. A distinct advantage of iglu is that it comes with a point-and-click graphical user interface (GUI) which makes the package widely accessible to users regardless of their programming experience. Thus, the open-source and easy to use iglu package will help advance CGM research and CGM data analyses. R package iglu is publicly available on CRAN and at https://github.com/irinagain/iglu.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/instrumentación , Glucemia/análisis , Diabetes Mellitus/sangre , Programas Informáticos , Automonitorización de la Glucosa Sanguínea/métodos , Análisis de Datos , Diabetes Mellitus/diagnóstico , Manejo de la Enfermedad , Humanos
18.
Sensors (Basel) ; 21(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672201

RESUMEN

The ability of individuals to engage in physical activity is a critical component of overall health and quality of life. However, there is a natural decline in physical activity associated with the aging process. Establishing normative trends of physical activity in aging populations is essential to developing public health guidelines and informing clinical perspectives regarding individuals' levels of physical activity. Beyond overall quantity of physical activity, patterns regarding the timing of activity provide additional insights into latent health status. Wearable accelerometers, paired with statistical methods from functional data analysis, provide the means to estimate diurnal patterns in physical activity. To date, these methods have been only applied to study aging trends in populations based in the United States. Here, we apply curve registration and functional regression to 24 h activity profiles for 88,793 men (N = 39,255) and women (N = 49,538) ages 42-78 from the UK Biobank accelerometer study to understand how physical activity patterns vary across ages and by gender. Our analysis finds that daily patterns in both the volume of physical activity and probability of being active change with age, and that there are marked gender differences in these trends. This work represents the largest-ever population analyzed using tools of this kind, and suggest that aging trends in physical activity are reproducible in different populations across countries.


Asunto(s)
Bancos de Muestras Biológicas , Ejercicio Físico , Calidad de Vida , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reino Unido , Articulación de la Muñeca
19.
Ann Intern Med ; 174(6): 777-785, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33646849

RESUMEN

BACKGROUND: Predicting the clinical trajectory of individual patients hospitalized with coronavirus disease 2019 (COVID-19) is challenging but necessary to inform clinical care. The majority of COVID-19 prognostic tools use only data present upon admission and do not incorporate changes occurring after admission. OBJECTIVE: To develop the Severe COVID-19 Adaptive Risk Predictor (SCARP) (https://rsconnect.biostat.jhsph.edu/covid_trajectory/), a novel tool that can provide dynamic risk predictions for progression from moderate disease to severe illness or death in patients with COVID-19 at any time within the first 14 days of their hospitalization. DESIGN: Retrospective observational cohort study. SETTINGS: Five hospitals in Maryland and Washington, D.C. PATIENTS: Patients who were hospitalized between 5 March and 4 December 2020 with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) confirmed by nucleic acid test and symptomatic disease. MEASUREMENTS: A clinical registry for patients hospitalized with COVID-19 was the primary data source; data included demographic characteristics, admission source, comorbid conditions, time-varying vital signs, laboratory measurements, and clinical severity. Random forest for survival, longitudinal, and multivariate (RF-SLAM) data analysis was applied to predict the 1-day and 7-day risks for progression to severe disease or death for any given day during the first 14 days of hospitalization. RESULTS: Among 3163 patients admitted with moderate COVID-19, 228 (7%) became severely ill or died in the next 24 hours; an additional 355 (11%) became severely ill or died in the next 7 days. The area under the receiver-operating characteristic curve (AUC) for 1-day risk predictions for progression to severe disease or death was 0.89 (95% CI, 0.88 to 0.90) and 0.89 (CI, 0.87 to 0.91) during the first and second weeks of hospitalization, respectively. The AUC for 7-day risk predictions for progression to severe disease or death was 0.83 (CI, 0.83 to 0.84) and 0.87 (CI, 0.86 to 0.89) during the first and second weeks of hospitalization, respectively. LIMITATION: The SCARP tool was developed by using data from a single health system. CONCLUSION: Using the predictive power of RF-SLAM and longitudinal data from more than 3000 patients hospitalized with COVID-19, an interactive tool was developed that rapidly and accurately provides the probability of an individual patient's progression to severe illness or death on the basis of readily available clinical information. PRIMARY FUNDING SOURCE: Hopkins inHealth and COVID-19 Administrative Supplement for the HHS Region 3 Treatment Center from the Office of the Assistant Secretary for Preparedness and Response.


Asunto(s)
COVID-19/mortalidad , COVID-19/patología , Mortalidad Hospitalaria , Gravedad del Paciente , Neumonía Viral/mortalidad , Medición de Riesgo/métodos , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , District of Columbia/epidemiología , Femenino , Hospitalización , Humanos , Masculino , Maryland/epidemiología , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , Valor Predictivo de las Pruebas , Pronóstico , Sistema de Registros , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2
20.
medRxiv ; 2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33469592

RESUMEN

Background: The majority of U.S. reports of COVID-19 clinical characteristics, disease course, and treatments are from single health systems or focused on one domain. Here we report the creation of the National COVID Cohort Collaborative (N3C), a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative U.S. cohort of COVID-19 cases and controls to date. This multi-center dataset supports robust evidence-based development of predictive and diagnostic tools and informs critical care and policy. Methods and Findings: In a retrospective cohort study of 1,926,526 patients from 34 medical centers nationwide, we stratified patients using a World Health Organization COVID-19 severity scale and demographics; we then evaluated differences between groups over time using multivariable logistic regression. We established vital signs and laboratory values among COVID-19 patients with different severities, providing the foundation for predictive analytics. The cohort included 174,568 adults with severe acute respiratory syndrome associated with SARS-CoV-2 (PCR >99% or antigen <1%) as well as 1,133,848 adult patients that served as lab-negative controls. Among 32,472 hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March/April 2020 to 8.6% in September/October 2020 (p = 0.002 monthly trend). In a multivariable logistic regression model, age, male sex, liver disease, dementia, African-American and Asian race, and obesity were independently associated with higher clinical severity. To demonstrate the utility of the N3C cohort for analytics, we used machine learning (ML) to predict clinical severity and risk factors over time. Using 64 inputs available on the first hospital day, we predicted a severe clinical course (death, discharge to hospice, invasive ventilation, or extracorporeal membrane oxygenation) using random forest and XGBoost models (AUROC 0.86 and 0.87 respectively) that were stable over time. The most powerful predictors in these models are patient age and widely available vital sign and laboratory values. The established expected trajectories for many vital signs and laboratory values among patients with different clinical severities validates observations from smaller studies, and provides comprehensive insight into COVID-19 characterization in U.S. patients. Conclusions: This is the first description of an ongoing longitudinal observational study of patients seen in diverse clinical settings and geographical regions and is the largest COVID-19 cohort in the United States. Such data are the foundation for ML models that can be the basis for generalizable clinical decision support tools. The N3C Data Enclave is unique in providing transparent, reproducible, easily shared, versioned, and fully auditable data and analytic provenance for national-scale patient-level EHR data. The N3C is built for intensive ML analyses by academic, industry, and citizen scientists internationally. Many observational correlations can inform trial designs and care guidelines for this new disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...