Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 222(Pt B): 1861-1875, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208815

RESUMEN

3D printing of polymeric scaffolds and autologous stem cells is a promising tool for damaged facial cartilage reconstruction surgeries. To this end, suitable bioinks are needed to generate scaffolds with the required morphological and functional features. We formulated hydrogel bioinks using k-Carrageen (kC) and poly(vinyl alcohol) (PVA) in three different weight ratios. The kC gives the systems the ability to undergo rapid sol-to-gel transitions upon cooling from 60 °C and above to body temperature, while the PVA is used as rheology modifier and porogen. The latter is crosslinked after molding or printing by freeze-thaw cycling for 1 day (FT1) or 5 days (FT5). To select the most suitable formulation for 3D printing, the sol-to-gel transition and the physico-chemical, mechanical and morphological properties of obtained hydrogels were studied. Moreover, the absence of cytotoxic effects of the material on SASCs was assessed in both stemness-preserving or chondro-inductive media. Printing trials were performed to identify optimal process parameters and co-printing and post-printing seeding approaches of SASCs were evaluated. Cells were found to be viable after co-printing and also after the FT1 treatment. Viable adherent cells were also found in the FT5 system, where cells were plated after freezing and thawing treatment.


Asunto(s)
Impresión Tridimensional , Andamios del Tejido , Carragenina/farmacología , Carragenina/química , Andamios del Tejido/química , Hidrogeles/farmacología , Hidrogeles/química , Cartílago , Ingeniería de Tejidos
2.
Biomolecules ; 12(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36291553

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Neuronas/metabolismo , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología
3.
Int J Biol Macromol ; 211: 639-652, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35569680

RESUMEN

Polymeric hydrogels are increasingly considered as scaffolds for tissue engineering due to their extraordinary resemblance with the extracellular matrix (ECM) of many tissues. As cell adhesion is a key factor in regulating important cell functions, hydrogel scaffolds are often functionalized or loaded with a variety of bioactive molecules that can promote adhesion. Interesting biomimetic approaches exploit the properties of mussel-inspired recombinant adhesive proteins. In this work, we prepared hydrogel scaffolds with a 50%w mixture of k-carrageenan (kC) and polyvinyl alcohol (PVA), by a two-step physical gelation process, and we coated them with Perna viridis foot protein-5ß (Pvfp5ß). The mechanical and morphological properties of hydrogels were investigated both after conditioning with typical cell culture media and also after coating with the Pvfp5ß. The protein resulted strongly adsorbed onto the surface of the hydrogel and also able to penetrate in its interiors to a certain depth, mainly interacting with the kC component of the scaffold as resulted from the confocal analysis. Mouse embryonic fibroblasts NIH-3T3 were seeded on top of the hydrogels and cultured up to two weeks. The role of Pvfp5ß in promoting cell adhesion, spreading and colonization of the scaffold was demonstrated.


Asunto(s)
Fibroblastos , Alcohol Polivinílico , Animales , Carragenina/metabolismo , Adhesión Celular/fisiología , Fibroblastos/metabolismo , Hidrogeles/metabolismo , Hidrogeles/farmacología , Ratones , Alcohol Polivinílico/metabolismo , Proteínas Recombinantes/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido
4.
Biology (Basel) ; 11(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336790

RESUMEN

The aim of the present work is the characterization of biscuit doughs enriched with pomegranate peel powder (PPP) at 3 (PPP3) and 5 (PPP5) wt% in the prospect of developing a fortified aliment as a support of the therapy of chronic inflammatory diseases of the intestinal tract. The total phenolic content of the powder was preliminarily evaluated. Then, the main compounds present in the PPP were identified by HPLC-ESI-TOF-MS analysis, being mainly hydrolysable tannins. The PPP was then treated at 180 °C for 20 min to mimic the baking treatment, and its water-soluble fraction (PPPwsf) was then added in the Caco-2 cell culture as a model of the intestinal epithelial barrier to verify its dose-dependent toxicity, ability in counteracting the oxidative stress, and anti-inflammatory action. Rheological experiments were performed to predict the macroscopic behavior of the PPP-added doughs during lamination and biscuit baking. SEM investigations gave their contribution to the microscopic comprehension of the dough structure. Finally, a consumer panel composed by thirty volunteers was enrolled to express its opinion on the sensory agreeableness of the biscuits prepared with two different concentrations of PPP compared with the reference dough. The discussion is focused on the biological effects of the main components found in the PPP.

5.
Mater Sci Eng C Mater Biol Appl ; 131: 112545, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34857257

RESUMEN

Cartilage or bone regeneration approaches based on the direct injection of mesenchymal stem cells (MSCs) at the lesion site encounter several challenges, related to uncontrolled cell spreading and differentiation, reduced cell viability and poor engrafting. This work presents a simple and versatile strategy based on the synergic combination of in-situ forming hydrogels and spheroids of adipose stem cells (SASCs) with great potential for minimally invasive regenerative interventions aimed to threat bone and cartilage defects. Aqueous dispersions of partially degalactosylated xyloglucan (dXG) are mixed with SASCs derived from liposuction and either a chondroinductive or an osteoinductive medium. The dispersions rapidly set into hydrogels when temperature is brought to 37 °C. The physico-chemical and mechanical properties of the hydrogels are controlled by polymer concentration. The hydrogels, during 21 day incubation at 37 °C, undergo significant structural rearrangements that support cell proliferation and spreading. In formulations containing 1%w dXG cell viability increases up to 300% for SASCs-derived osteoblasts and up to 1000% for SASCs-derived chondrocytes if compared with control 2D cultures. The successful differentiation into the target cells is supported by the expression of lineage-specific genes. Cell-cell and cell-matrix interactions are also investigated. All formulations resulted injectable, and the incorporated cells are fully viable after injection.


Asunto(s)
Hidrogeles , Xilanos , Regeneración Ósea , Cartílago , Diferenciación Celular , Glucanos , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...