Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
FEBS J ; 291(7): 1506-1529, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38145505

RESUMEN

The kainate receptors GluK1-3 (glutamate receptor ionotropic, kainate receptors 1-3) belong to the family of ionotropic glutamate receptors and are essential for fast excitatory neurotransmission in the brain, and are associated with neurological and psychiatric diseases. How these receptors can be modulated by small-molecule agents is not well understood, especially for GluK3. We show that the positive allosteric modulator BPAM344 can be used to establish robust calcium-sensitive fluorescence-based assays to test agonists, antagonists, and positive allosteric modulators of GluK1-3. The half-maximal effective concentration (EC50) of BPAM344 for potentiating the response of 100 µm kainate was determined to be 26.3 µm for GluK1, 75.4 µm for GluK2, and 639 µm for GluK3. Domoate was found to be a potent agonist for GluK1 and GluK2, with an EC50 of 0.77 and 1.33 µm, respectively, upon co-application of 150 µm BPAM344. At GluK3, domoate acts as a very weak agonist or antagonist with a half-maximal inhibitory concentration (IC50) of 14.5 µm, in presence of 500 µm BPAM344 and 100 µm kainate for competition binding. Using H523A-mutated GluK3, we determined the first dimeric structure of the ligand-binding domain by X-ray crystallography, allowing location of BPAM344, as well as zinc-, sodium-, and chloride-ion binding sites at the dimer interface. Molecular dynamics simulations support the stability of the ion sites as well as the involvement of Asp761, Asp790, and Glu797 in the binding of zinc ions. Using electron microscopy, we show that, in presence of glutamate and BPAM344, full-length GluK3 adopts a dimer-of-dimers arrangement.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Tiazinas , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/agonistas , Ácido Kaínico/farmacología , Óxidos S-Cíclicos , Zinc/metabolismo
2.
J Gen Physiol ; 155(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36625864

RESUMEN

Acid-sensing ion channels (ASICs) play important roles in inflammatory pathways by conducting ions across the neuronal membrane in response to proton binding under acidic conditions. Recent studies have shown that ASICs can be modulated by arachidonic acid (AA), and, in the case of the ASIC3 subtype, even activated by AA at physiological pH. However, the mechanism by which these fatty acids act on the channel is still unknown. Here, we have used multiscale molecular dynamics simulations to predict a putative, general binding region of AA to models of the human ASIC protein. We have identified, in agreement with recent studies, residues in the outer leaflet transmembrane region which interact with AA. In addition, despite their similar modulation, we observe subtle differences in the AA interaction pattern between human ASIC1a and human ASIC3, which can be reversed by mutating three key residues at the outer leaflet portion of TM1. We further probed interactions with these residues in hASIC3 using atomistic simulations and identified possible AA coordinating interactions; salt bridge interactions of AA with R65hASIC3 and R68hASIC3 and AA tail interactions with the Y58hASIC3 aromatic ring. We have shown that longer fatty acid tails with more double bonds have increased relative occupancy in this region of the channel, a finding supported by recent functional studies. We further proposed that the modulatory effect of AA on ASIC does not result from changes in local membrane curvature. Rather, we speculate that it may occur through structural changes to the ion channel upon AA binding.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Simulación de Dinámica Molecular , Humanos , Canales Iónicos Sensibles al Ácido/metabolismo , Dominios Proteicos , Neuronas/metabolismo , Sitios de Unión , Ácidos Araquidónicos
3.
Am J Hum Genet ; 109(7): 1217-1241, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35675825

RESUMEN

GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.


Asunto(s)
Trastornos del Neurodesarrollo , Receptores AMPA , Estudios de Cohortes , Heterocigoto , Humanos , Mutación Missense , Trastornos del Neurodesarrollo/genética , Receptores AMPA/genética
4.
Br J Pharmacol ; 179(21): 4941-4957, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35703154

RESUMEN

BACKGROUND AND PURPOSE: Statins, inhibitors of HMG-CoA reductase, are mainstay treatment for hypercholesterolaemia. However, muscle pain and weakness prevent many patients from benefiting from their cardioprotective effects. We previously demonstrated that simvastatin activates skeletal ryanodine receptors (RyR1), an effect that could be important in initiating myopathy. Using a range of structurally diverse statin analogues, we examined structural features associated with RyR1 activation, aiming to identify statins lacking this property. EXPERIMENTAL APPROACH: Compounds were screened for RyR1 activity utilising [3 H]ryanodine binding. Mechanistic insight into RyR1 activity was studied by incorporating RyR1 channels from sheep, mouse or rabbit skeletal muscle into bilayers. KEY RESULTS: All UK-prescribed statins activated RyR1 at nanomolar concentrations. Cerivastatin, withdrawn from the market due to life-threatening muscle-related side effects, was more effective than currently-prescribed statins and possessed the unique ability to open RyR1 channels independently of cytosolic Ca2+ . We synthesised the one essential structural moiety that all statins must possess for HMG-CoA reductase inhibition, the R-3,5-dihydroxypentanoic acid unit, and it did not activate RyR1. We also identified five analogues retaining potent HMG-CoA reductase inhibition that inhibited RyR1 and four that lacked the ability to modulate RyR1. CONCLUSION AND IMPLICATIONS: That cerivastatin activates RyR1 most strongly supports the hypothesis that RyR1 activation is implicated in statin-induced myopathy. Demonstrating that statin regulation of RyR1 and HMG-CoA reductase are separable effects will allow the role of RyR1 in statin-induced myopathy to be further elucidated by the tool compounds we have identified, allowing development of effective cardioprotective statins with improved patient tolerance.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Acilcoenzima A , Animales , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ratones , Músculo Esquelético , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/tratamiento farmacológico , Conejos , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina , Ovinos , Simvastatina/farmacología
5.
Front Cell Neurosci ; 15: 761813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924957

RESUMEN

Structures of the trimeric acid-sensing ion channel have been solved in the resting, toxin-bound open and desensitized states. Within the extracellular domain, there is little difference between the toxin-bound open state and the desensitized state. The main exception is that a loop connecting the 11th and 12th ß-strand, just two amino acid residues long, undergoes a significant and functionally critical re-orientation or flipping between the open and desensitized conformations. Here we investigate how specific interactions within the surrounding area influence linker stability in the "flipped" desensitized state using all-atom molecular dynamics simulations. An inherent challenge is bringing the relatively slow channel desensitization and recovery processes (in the milliseconds to seconds) within the time window of all-atom simulations (hundreds of nanoseconds). To accelerate channel behavior, we first identified the channel mutations at either the Leu414 or Asn415 position with the fastest recovery kinetics followed by molecular dynamics simulations of these mutants in a deprotonated state, accelerating recovery. By mutating one residue in the loop and examining the evolution of interactions in the neighbor, we identified a novel electrostatic interaction and validated prior important interactions. Subsequent functional analysis corroborates these findings, shedding light on the molecular factors controlling proton-mediated transitions between functional states of the channel. Together, these data suggest that the flipped loop in the desensitized state is stabilized by interactions from surrounding regions keeping both L414 and N415 in place. Interestingly, very few mutations in the loop allow for equivalent channel kinetics and desensitized state stability. The high degree of sequence conservation in this region therefore indicates that the stability of the ASIC desensitized state is under strong selective pressure and underlines the physiological importance of desensitization.

6.
J Physiol ; 599(23): 5179-5201, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34676560

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is a lethal genetic disease causing arrhythmias and sudden cardiac death in children and young adults and is linked to mutations in the cardiac ryanodine receptor (RyR2). The effects of CPVT1 mutations on RyR2 ion-channel function are often investigated using purified recombinant RyR2 channels homozygous for the mutation. However, CPVT1 patients are heterozygous for the disease, so this approach does not reveal the true changes to RyR2 function across the entire RyR2 population of channels in the heart. We therefore investigated the native cardiac RyR2 single-channel abnormalities in mice heterozygous for the CPVT1 mutation, V2475F(+/-)-RyR2, and applied molecular modelling techniques to investigate the possible structural changes that could initiate any altered function. We observed that increased sensitivity of cardiac V2475F(+/-)-RyR2 channels to both activating and inactivating levels of cytosolic Ca2+ , plus attenuation of Mg2+ inhibition, were the most marked changes. Severity of abnormality was not uniform across all channels, giving rise to multiple sub-populations with differing functional characteristics. For example, 46% of V2475F(+/-)-RyR2 channels exhibited reduced Mg2+ inhibition and 23% were actually activated by Mg2+ . Using homology modelling, we discovered that V2475 is situated at a hinge between two regions of the RyR2 helical domain 1 (HD1). Our model proposes that detrimental functional changes to RyR2 arise because mutation at this critical site reduces the angle between these regions. Our results demonstrate the necessity of characterising the total heterozygous population of CPVT1-mutated channels in order to understand CPVT1 phenotypes in patients. KEY POINTS: RyR2 mutations can cause type-1 catecholaminergic polymorphic ventricular tachycardia (CPVT1), a lethal, autosomal-dominant arrhythmic disease. However, the changes in RyR2 ion-channel function that result from the many different patient mutations are rarely investigated in detail and often only recombinant RyR2, homozygous for the mutation, is studied. As CPVT1 is a heterozygous disease and the tetrameric RyR2 channels expressed in the heart will contain varying numbers of mutated monomers, we have investigated the range of RyR2 single-channel abnormalities found in the hearts of mice heterozygous for the CPVT1 mutation, V2475F(+/-)-RyR2. Specific alterations to ligand regulation of V2475F(+/-)-RyR2 were observed. Multiple sub-populations of channels exhibited varying degrees of abnormality. In particular, an increased sensitivity to activating and inactivating cytosolic [Ca2+ ], and reduced sensitivity to Mg2+ inhibition were evident. Our results provide mechanistic insight into the changes to RyR2 gating that destabilise sarcoplasmic reticulum Ca2+ -release causing life-threatening arrhythmias in V2475F(+/-)-CPVT1 patients.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Taquicardia Ventricular , Animales , Calcio/metabolismo , Señalización del Calcio , Humanos , Ratones , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/genética
7.
J Gen Physiol ; 153(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34061161

RESUMEN

Desensitization is a common feature of ligand-gated ion channels, although the molecular cause varies widely between channel types. Mutations that greatly reduce or nearly abolish desensitization have been described for many ligand-gated ion channels, including glutamate, GABA, glycine, and nicotinic receptors, but not for acid-sensing ion channels (ASICs) until recently. Mutating Gln276 to a glycine (Q276G) in human ASIC1a was reported to mostly abolish desensitization at both the macroscopic and the single channel levels, potentially providing a valuable tool for subsequent studies. However, we find that in both human and chicken ASIC1, the effect of Q276G is modest. In chicken ASIC1, the equivalent Q277G slightly reduces desensitization when using pH 6.5 as a stimulus but desensitizes, essentially like wild-type, when using more acidic pH values. In addition, steady-state desensitization is intact, albeit right-shifted, and recovery from desensitization is accelerated. Molecular dynamics simulations indicate that the Gln277 side chain participates in a hydrogen bond network that might stabilize the desensitized conformation. Consistent with this, destabilizing this network with the Q277N or Q277L mutations largely mimics the Q277G phenotype. In human ASIC1a, the Q276G mutation also reduces desensitization, but not to the extent reported previously. Interestingly, the kinetic consequences of Q276G depend on the human variant used. In the common G212 variant, Q276G slows desensitization, while in the rare D212 variant desensitization accelerates. Our data reveal that while the Q/G mutation does not abolish or substantially impair desensitization as previously reported, it does point to unexpected differences between chicken and human ASICs and the need for careful scrutiny before using this mutation in future studies.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Glutamina , Canales Iónicos Sensibles al Ácido/genética , Animales , Pollos , Glicina , Humanos , Concentración de Iones de Hidrógeno , Mutación
8.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33579823

RESUMEN

Human adult muscle-type acetylcholine receptors are heteropentameric ion channels formed from four different, but evolutionarily related, subunits. These subunits assemble with a precise stoichiometry and arrangement such that two chemically distinct agonist-binding sites are formed between specific subunit pairs. How this subunit complexity evolved and became entrenched is unclear. Here we show that a single historical amino acid substitution is able to constrain the subunit stoichiometry of functional acetylcholine receptors. Using a combination of ancestral sequence reconstruction, single-channel electrophysiology, and concatenated subunits, we reveal that an ancestral ß-subunit can not only replace the extant ß-subunit but can also supplant the neighboring δ-subunit. By forward evolving the ancestral ß-subunit with a single amino acid substitution, we restore the requirement for a δ-subunit for functional channels. These findings reveal that a single historical substitution necessitates an increase in acetylcholine receptor complexity and, more generally, that simple stepwise mutations can drive subunit entrenchment in this model heteromeric protein.


Asunto(s)
Sustitución de Aminoácidos , Multimerización de Proteína , Receptores Nicotínicos/genética , Línea Celular , Evolución Molecular , Humanos , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo
9.
J Physiol ; 599(2): 417-430, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32306405

RESUMEN

Acid-sensing ion channels (ASICs) are a class of trimeric cation-selective ion channels activated by changes in pH within the physiological range. They are widely expressed in the central and peripheral nervous systems where they participate in a range of physiological and pathophysiological situations such as learning and memory, pain sensation, fear and anxiety, substance abuse and cell death. ASICs are localized to cell bodies and dendrites, including the postsynaptic density, and within the last 5 years several examples of proton-evoked ASIC excitatory postsynaptic currents have emerged. Thus, ASICs have become bona fide neurotransmitter-gated ion channels, activated by the smallest neurotransmitter possible: protons. Here we review how protons are thought to drive the conformational changes associated with ASIC activation and desensitization. In particular, we weigh the evidence for and against the so-called 'acidic pocket' being a vital proton sensor and discuss the emerging role of the ß11-12 linker as a desensitization switch or 'molecular clutch'. We also examine how proton-induced conformational changes pose unique challenges to classical molecular dynamics simulations, as well as some possible solutions. Given the emergence of new methodologies and structures, the coming years will probably see many advances in the study of acid-sensing ion channels.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Protones , Concentración de Iones de Hidrógeno
10.
J Biol Chem ; 295(52): 17922-17934, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-32873708

RESUMEN

Centrioles are key eukaryotic organelles that are responsible for the formation of cilia and flagella, and for organizing the microtubule network and the mitotic spindle in animals. Centriole assembly requires oligomerization of the essential protein spindle assembly abnormal 6 (SAS-6), which forms a structural scaffold templating the organization of further organelle components. A dimerization interaction between SAS-6 N-terminal "head" domains was previously shown to be essential for protein oligomerization in vitro and for function in centriole assembly. Here, we developed a pharmacophore model allowing us to assemble a library of low-molecular-weight ligands predicted to bind the SAS-6 head domain and inhibit protein oligomerization. We demonstrate using NMR spectroscopy that a ligand from this family binds at the head domain dimerization site of algae, nematode, and human SAS-6 variants, but also that another ligand specifically recognizes human SAS-6. Atomistic molecular dynamics simulations starting from SAS-6 head domain crystallographic structures, including that of the human head domain which we now resolve, suggest that ligand specificity derives from favorable Van der Waals interactions with a hydrophobic cavity at the dimerization site.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Multimerización de Proteína , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Centriolos/efectos de los fármacos , Simulación de Dinámica Molecular , Conformación Proteica
11.
Elife ; 92020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32031522

RESUMEN

Acid-sensing ion channels (ASICs) are neuronal sodium-selective channels activated by reductions in extracellular pH. Structures of the three presumptive functional states, high-pH resting, low-pH desensitized, and toxin-stabilized open, have all been solved for chicken ASIC1. These structures, along with prior functional data, suggest that the isomerization or flipping of the ß11-12 linker in the extracellular, ligand-binding domain is an integral component of the desensitization process. To test this, we combined fast perfusion electrophysiology, molecular dynamics simulations and state-dependent non-canonical amino acid cross-linking. We find that both desensitization and recovery can be accelerated by orders of magnitude by mutating resides in this linker or the surrounding region. Furthermore, desensitization can be suppressed by trapping the linker in the resting state, indicating that isomerization of the ß11-12 linker is not merely a consequence of, but a necessity for the desensitization process in ASICs.


Asunto(s)
Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Animales , Pollos , Femenino , Sustancias Peligrosas/toxicidad , Concentración de Iones de Hidrógeno , Isomerismo , Simulación de Dinámica Molecular , Embarazo
12.
Mol Pharmacol ; 96(6): 835-850, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31582576

RESUMEN

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) constitute a subclass of the ionotropic glutamate receptor superfamily, which functions as glutamate-gated cation channels to mediate the majority of excitatory neurotransmission in the central nervous system. AMPARs are therapeutic targets in a range of brain disorders associated with abnormal glutamate hyperactivity. Multiple classes of AMPAR inhibitors have been developed during the past decades, including competitive antagonists, ion channel blockers, and negative allosteric modulators (NAMs). At present, the NAM is the only class of AMPAR ligands that have been developed into safe and useful drugs in humans in the form of perampanel (Fycompa), which was recently approved for treatment of epilepsy. Compared with the detailed understanding of other AMPAR ligand classes, surprisingly little information has been available regarding the molecular mechanism of perampanel and other classes of NAMs at AMPARs; including the location and structure of NAM binding pockets in the receptor complex. However, structures of the AMPAR GluA2 in complex with NAMs were recently reported that unambiguously identified the NAM binding sites. In parallel with this work, our aim with the present study was to identify specific residues involved in the formation of the NAM binding site for three prototypical AMPAR NAMs. Hence, we have performed a mutational analysis of the AMPAR region that links the four extracellular ligand-binding domains to the central ion channel in the transmembrane domain region. Furthermore, we perform computational ligand docking of the NAMs into structural models of the homomeric GluA2 receptor and optimize side chain conformations around the NAMs to model how NAMs bind in this specific site. The new insights provide potentially valuable input for structure-based drug design of new NAMs. SIGNIFICANCE STATEMENT: The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are glutamate-gated ion channels that mediate the majority of excitatory neurotransmission in the brain. Negative allosteric modulators of AMPA receptors are considered to have significant therapeutic potential in diseases linked to glutamate hyperactivity. The present work employs mutational analysis and molecular modeling of the binding site for prototypical NAMs to provide new molecular insight into how NAMs interact with the AMPA receptor, which is of potential use for future design of new types of NAMs.


Asunto(s)
Mutación/genética , Receptores de Glutamato/química , Receptores de Glutamato/genética , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Cristalografía por Rayos X , Femenino , Células HEK293 , Humanos , Nitrilos , Estructura Secundaria de Proteína , Piridonas/farmacología , Receptores de Glutamato/metabolismo , Xenopus laevis
13.
Sci Rep ; 9(1): 3526, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837637

RESUMEN

Centrioles are conserved organelles fundamental for the organisation of microtubules in animal cells. Oligomerisation of the spindle assembly abnormal protein 6 (SAS-6) is an essential step in the centriole assembly process and may act as trigger for the formation of these organelles. SAS-6 oligomerisation is driven by two independent interfaces, comprising an extended coiled coil and a dimeric N-terminal globular domain. However, how SAS-6 oligomerisation is controlled remains unclear. Here, we show that in the Caenorhabditis elegans SAS-6, a segment of the N-terminal globular domain, unresolved in crystallographic structures, comprises a flexible loop that assists SAS-6 oligomerisation. Atomistic molecular dynamics simulations and nuclear magnetic resonance experiments suggest that transient interactions of this loop across the N-terminal dimerisation interface stabilise the SAS-6 oligomer. We discuss the possibilities presented by such flexible SAS-6 segments for the control of centriole formation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Centriolos/metabolismo , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
14.
Sci Rep ; 8(1): 15011, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30301919

RESUMEN

ATP is an essential constitutive regulator of cardiac ryanodine receptors (RyR2), enabling small changes in cytosolic Ca2+ to trigger large changes in channel activity. With recent landmark determinations of the full structures of RyR1 (skeletal isoform) and RyR2 using cryo-EM, and identification of the RyR1 ATP binding site, we have taken the opportunity to model the binding of fragments of ATP into RyR2 in order to investigate how the structure of the ATP site dictates the functional responses of ligands attracted there. RyR2 channel gating was assessed under voltage-clamp conditions and by [3H]ryanodine binding studies. We show that even the triphosphate (PPPi) moiety alone was capable of activating RyR2 but produced two distinct effects (activation or irreversible inactivation) that we suggest correspond to two preferred binding locations within the ATP site. Combinations of complementary fragments of ATP (Pi + ADP or PPi + AMP) could not reproduce the effects of ATP, however, the presence of adenosine prevented the inactivating PPPi effects, allowing activation similar to that of ATP. RyR2 appears to accommodate diverse types of molecules, including PPPi, deep within the ATP binding site. The most effective ligands, however, have at least three phosphate groups that are guided into place by a nucleoside.


Asunto(s)
Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Activación del Canal Iónico , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Humanos , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Relación Estructura-Actividad
15.
Neuropharmacology ; 132: 20-30, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28669899

RESUMEN

Developments in structural biology mean that the number of different ion channel structures has increased significantly in recent years. Structures of ion channels enable us to rationalize how mutations may lead to channelopathies. However, determining the structures of ion channels is still not trivial, especially as they necessarily exist in many distinct functional states. Therefore, the use of computational modelling can provide complementary information that can refine working hypotheses of both wild type and mutant ion channels. The simplest but still powerful tool is homology modelling. Many structures are available now that can provide suitable templates for many different types of ion channels, allowing a full three-dimensional interpretation of mutational effects. These structural models, and indeed the structures themselves obtained by X-ray crystallography, and more recently cryo-electron microscopy, can be subjected to molecular dynamics simulations, either as a tool to help explore the conformational dynamics in detail or simply as a means to refine the models further. Here we review how these approaches have been used to improve our understanding of how diseases might be linked to specific mutations in ion channel proteins. This article is part of the Special Issue entitled 'Channelopathies.'


Asunto(s)
Canalopatías/genética , Canalopatías/metabolismo , Simulación de Dinámica Molecular , Humanos
16.
Biophys J ; 113(10): 2173-2177, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935133

RESUMEN

Kainate receptors require the presence of external ions for gating. Most work thus far has been performed on homomeric GluK2 but, in vivo, kainate receptors are likely heterotetramers. Agonists bind to the ligand-binding domain (LBD) which is arranged as a dimer of dimers as exemplified in homomeric structures, but no high-resolution structure currently exists of heteromeric kainate receptors. In a full-length heterotetramer, the LBDs could potentially be arranged either as a GluK2 homomer alongside a GluK5 homomer or as two GluK2/K5 heterodimers. We have constructed models of the LBD dimers based on the GluK2 LBD crystal structures and investigated their stability with molecular dynamics simulations. We have then used the models to make predictions about the functional behavior of the full-length GluK2/K5 receptor, which we confirmed via electrophysiological recordings. A key prediction and observation is that lithium ions bind to the dimer interface of GluK2/K5 heteromers and slow their desensitization.


Asunto(s)
Modelos Moleculares , Multimerización de Proteína , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Glutamatos/metabolismo , Ligandos , Litio/farmacología , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína
17.
J Biol Chem ; 292(2): 551-562, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27864368

RESUMEN

Allosteric modulators of pentameric ligand-gated ion channels are thought to act on elements of the pathways that couple agonist binding to channel gating. Using α4ß2 nicotinic acetylcholine receptors and the α4ß2-selective positive modulators 17ß-estradiol (ßEST) and desformylflustrabromine (dFBr), we have identified pathways that link the binding sites for these modulators to the Cys loop, a region that is critical for channel gating in all pentameric ligand-gated ion channels. Previous studies have shown that the binding site for potentiating ßEST is in the C-terminal (post-M4) region of the α4 subunit. Here, using homology modeling in combination with mutagenesis and electrophysiology, we identified the binding site for potentiating dFBr on the top half of a cavity between the third (M3) and fourth transmembrane (M4) α-helices of the α4 subunit. We found that the binding sites for ßEST and dFBr communicate with the Cys loop, through interactions between the last residue of post-M4 and Phe170 of the conserved FPF sequence of the Cys loop, and that these interactions affect potentiating efficacy. In addition, interactions between a residue in M3 (Tyr309) and Phe167, a residue adjacent to the Cys loop FPF motif, also affect dFBr potentiating efficacy. Thus, the Cys loop acts as a key control element in the allosteric transduction pathway for potentiating ßEST and dFBr. Overall, we propose that positive allosteric modulators that bind the M3-M4 cavity or post-M4 region increase the efficacy of channel gating through interactions with the Cys loop.


Asunto(s)
Estradiol/química , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Estradiol/farmacología , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores Nicotínicos/genética , Xenopus laevis
18.
J Chem Inf Model ; 56(9): 1787-97, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27482759

RESUMEN

The stability of protein-protein interfaces can be essential for protein function. For ionotropic glutamate receptors, a family of ligand-gated ion channels vital for normal function of the central nervous system, such an interface exists between the extracellular ligand binding domains (LBDs). In the full-length protein, the LBDs are arranged as a dimer of dimers. Agonist binding to the LBDs opens the ion channel, and briefly after activation the receptor desensitizes. Several residues at the LBD dimer interface are known to modulate desensitization, and conformational changes around these residues are believed to be involved in the state transition. The general hypothesis is that the interface is disrupted upon desensitization, and structural evidence suggests that the disruption might be substantial. However, when cross-linking the central part of this interface, functional data suggest that the receptor can still undergo desensitization, contradicting the hypothesis of major interface disruption. Here, we illustrate how opening the dimer interface using steered molecular dynamics (SMD) simulations, and analyzing the work values required, provides a quantitative measure for interface stability. For one subtype of glutamate receptors, which is regulated by ion binding to the dimer interface, we show that opening the interface without ions bound requires less work than with ions present, suggesting that ion binding indeed stabilizes the interface. Likewise, for interface mutants with longer-lived active states, the interface is more stable, while the work required to open the interface is reduced for less active mutants. Moreover, a cross-linked mutant can still undergo initial interface opening motions similar to the native receptor and at similar energetic cost. Thus, our results support that interface opening is involved in desensitization. Furthermore, they provide reconciliation of apparently opposing data and demonstrate that SMD simulations can give relevant biological insight into longer time scale processes without the need for expensive calculations.


Asunto(s)
Simulación de Dinámica Molecular , Receptores AMPA/química , Receptores AMPA/metabolismo , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Activación del Canal Iónico , Ligandos , Mutación , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Receptores AMPA/genética , Receptores de Ácido Kaínico/genética , Receptor de Ácido Kaínico GluK2
19.
Neuron ; 89(6): 1264-1276, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26924438

RESUMEN

Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two structural motifs that determine the time course of AMPAR channel activation. A network of electrostatic interactions at the apex of the AMPAR ligand-binding domain (LBD) is essential for gating by pore-forming subunits, whereas a conserved motif on the lower, D2 lobe of the LBD prolongs channel activity when auxiliary subunits are present. Accordingly, channel activity is almost entirely abolished by elimination of the electrostatic network but restored via auxiliary protein interactions at the D2 lobe. In summary, we propose that activation of native AMPAR complexes is coordinated by distinct structural pathways, favored by the association/dissociation of auxiliary subunits.


Asunto(s)
Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Mutación/fisiología , Receptores AMPA/química , Receptores AMPA/metabolismo , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Cristalografía por Rayos X , Estimulación Eléctrica , Ácido Glutámico/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico/genética , Litio/farmacología , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Mutación/genética , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores AMPA/genética , Electricidad Estática , Transfección
20.
J Physiol ; 594(7): 1821-40, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26682513

RESUMEN

KEY POINTS: Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion-channel block by facilitating blocker permeation. Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α-helical region. Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism. Our findings have broad implications for work on polyamine block of other cation-selective ion channels. ABSTRACT: Channel block and permeation by cytoplasmic polyamines is a common feature of many cation-selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α-helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation-selective ion channels.


Asunto(s)
Activación del Canal Iónico , Lipoproteínas LDL/metabolismo , Proteínas de la Membrana/metabolismo , Poliaminas/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Células HEK293 , Humanos , Proteínas Relacionadas con Receptor de LDL , Potenciales de la Membrana , Ratones , Dominios Proteicos , Ratas , Receptores de N-Metil-D-Aspartato , Receptor de Ácido Kaínico GluK2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...