Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(30): 26715-26722, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936465

RESUMEN

Metal-based antimicrobials have the potential to profile sustainable solutions to infection care and health. In this study, we report the synthesis of rGO-ZnO hybrid nanostructures by a simple co-precipitation approach with various mass ratios of GO, and their antimicrobial potential was assessed. The structural analysis confirms the presence of a hexagonal wurtzite structure with peak shifting in hybrid nanostructures and increases in crystallite size (11-24 nm). Raman spectra revealed GO doping in the D band (1350 cm-1) and G band (1590 cm-1). Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were performed to investigate the surface morphologies of the synthesized sediments, which showed a change in the morphology of ZnO from non-uniform spherical nanoparticles to a rod-like morphology of the prepared hybrid nanostructures. RAMAN spectra revealed that the retained functional groups on rGO planes were significant in anchoring ZnO to rGO. At lowest and maximum doses of ZnO, substantial bactericidal zones (p < 0.05) for S. aureus (1.55 and 1.95 mm) and E. coli (1.25 and 1.70 mm) were achieved accordingly. Additionally, the inhibition regions were 2.45-3.85 mm and 3.75-6.85 mm for S. aureus whereas (2.05-3.25 mm) and (2.95-3.90 mm) for E. coli at the lowest and maximum concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA