Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(3): 102988, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758804

RESUMEN

RNA-binding proteins (RBPs) are emerging as important players in regulating eukaryotic gene expression and genome stability. Specific RBPs have been shown to mediate various chromatin-associated processes ranging from transcription to gene silencing and DNA repair. One of the prominent classes of RBPs is the KH domain-containing proteins. Vigilin, an evolutionarily conserved KH domain-containing RBP has been shown to be associated with diverse biological processes like RNA transport and metabolism, sterol metabolism, chromosome segregation, and carcinogenesis. We have previously reported that vigilin is essential for heterochromatin-mediated gene silencing in fission yeast. More recently, we have identified that vigilin in humans plays a critical role in efficient repair of DNA double-stranded breaks and functions in homology-directed DNA repair. In this review, we highlight the multifaceted functions of vigilin and discuss the findings in the context of gene expression, genome organization, cancer, and autism-related disorders.


Asunto(s)
Trastorno Autístico , Schizosaccharomyces , Humanos , Trastorno Autístico/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Silenciador del Gen , Schizosaccharomyces/genética , Inestabilidad Genómica
2.
J Biol Chem ; 299(3): 102937, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690274

RESUMEN

Defective autophagy and lipotoxicity are the hallmarks of nonalcoholic fatty liver disease. However, the precise molecular mechanism for the defective autophagy in lipotoxic conditions is not fully known. In the current study, we elucidated that activation of the mammalian target of rapamycin complex 1 (mTORC1)-G9a-H3K9me2 axis in fatty acid-induced lipotoxicity blocks autophagy by repressing key autophagy genes. The fatty acid-treated cells show mTORC1 activation, increased histone methyltransferase G9a levels, and suppressed autophagy as indicated by increased accumulation of the key autophagic cargo SQSTM1/p62 and decreased levels of autophagy-related proteins LC3II, Beclin1, and Atg7. Our chromatin immunoprecipitation analysis showed that decrease in autophagy was associated with increased levels of the G9a-mediated repressive H3K9me2 mark and decreased RNA polymerase II occupancy at the promoter regions of Beclin1 and Atg7 in fatty acid-treated cells. Inhibition of mTORC1 in fatty acid-treated cells decreased G9a-mediated H3K9me2 occupancy and increased polymerase II occupancy at Beclin1 and Atg7 promoters. Furthermore, mTORC1 inhibition increased the expression of Beclin1 and Atg7 in fatty acid-treated cells and decreased the accumulation of SQSTM1/p62. Interestingly, the pharmacological inhibition of G9a alone in fatty acid-treated cells decreased the H3K9me2 mark at Atg7 and Beclin1 promoters and restored the expression of Atg7 and Beclin1. Taken together, our findings have identified the mTORC1-G9a-H3K9me2 axis as a negative regulator of the autophagy pathway in hepatocellular lipotoxicity and suggest that the G9a-mediated epigenetic repression is mechanistically a key step during the repression of autophagy in lipotoxic conditions.


Asunto(s)
Autofagia , Ácidos Grasos , Histona Metiltransferasas , Histonas , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Histonas/metabolismo , Ácidos Grasos/toxicidad , Autofagia/fisiología , Epigénesis Genética , Histona Metiltransferasas/metabolismo , Hepatocitos/fisiología , Células Hep G2 , Regulación de la Expresión Génica/efectos de los fármacos , Palmitatos/toxicidad , Beclina-1/genética , Beclina-1/metabolismo , Regiones Promotoras Genéticas , Autofagosomas/genética , Autofagosomas/metabolismo , Humanos
3.
iScience ; 25(4): 104142, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35434547

RESUMEN

Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, Drosophila, and yeast, indicating that this is a highly conserved response. The examination of histone deacetylase recruitment to chromatin after heat-shock identified SIRT1 as the major deacetylase subsequently enriched at gene-rich regions. Heat-induced SIRT1 recruitment was antagonized by chromatin remodeler SMARCAD1 depletion and, like hyperthermia, the depletion of the SMARCAD1 or combination of the two impaired DNA end resection and increased replication stress. Altered repair protein recruitment was associated with heat-shock-induced γ-H2AX chromatin changes and DSB repair processing. These results support a novel mechanism whereby hyperthermia impacts chromatin organization owing to H4K16ac deacetylation, negatively affecting the HR-dependent DSB repair.

4.
DNA Repair (Amst) ; 107: 103205, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34399315

RESUMEN

The accurate repair of DNA damage specifically the chromosomal double-strand breaks (DSBs) arising from exposure to physical or chemical agents, such as ionizing radiation (IR) and radiomimetic drugs is critical in maintaining genomic integrity. The DNA DSB response and repair is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes specifically histone modifications which impact cell-cycle checkpoints through enzymatic activities to repair the broken DNA ends. Various histone posttranslational modifications such as phosphorylation, acetylation, methylation and ubiquitylation have been shown to play a role in DNA damage repair. Recent studies have provided important insights into the role of histone-specific modifications in sensing DNA damage and facilitating the DNA repair. Histone modifications have been shown to determine the pathway choice for repair of DNA DSBs. This review will summarize the role of important histone acetyltransferases MOF and Tip60 mediated acetylation in repair of DNA DSBs in eukaryotic cells.


Asunto(s)
Histona Acetiltransferasas
5.
Genes (Basel) ; 12(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209979

RESUMEN

Packaging of the eukaryotic genome with histone and other proteins forms a chromatin structure that regulates the outcome of all DNA mediated processes. The cellular pathways that ensure genomic stability detect and repair DNA damage through mechanisms that are critically dependent upon chromatin structures established by histones and, particularly upon transient histone post-translational modifications. Though subjected to a range of modifications, histone methylation is especially crucial for DNA damage repair, as the methylated histones often form platforms for subsequent repair protein binding at damaged sites. In this review, we highlight and discuss how histone methylation impacts the maintenance of genome integrity through effects related to DNA repair and repair pathway choice.


Asunto(s)
Inestabilidad Genómica , Código de Histonas , Animales , Reparación del ADN , Histonas/metabolismo , Humanos , Metilación
6.
Mol Cell Biol ; 41(7): e0008221, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33941620

RESUMEN

Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.


Asunto(s)
Trastorno Autístico/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Inestabilidad Genómica/fisiología , Proteína BRCA1 , Reparación del ADN/fisiología , Replicación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Proto-Oncogenes Mas , Proteínas de Unión al ARN/metabolismo , Recombinasa Rad51/genética
7.
J Biol Chem ; 294(48): 18029-18040, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31554660

RESUMEN

Heterochromatin is a conserved feature of eukaryotic genomes and regulates various cellular processes, including gene silencing, chromosome segregation, and maintenance of genome stability. In the fission yeast Schizosaccharomyces pombe, heterochromatin formation involves methylation of lysine 9 in histone H3 (H3K9), which recruits Swi6/HP1 proteins to heterochromatic loci. The Swi6/HP1-H3K9me3 chromatin complex lies at the center of heterochromatic macromolecular assemblies and mediates many functions of heterochromatin by recruiting a diverse set of regulators. However, additional factors may be required for proper heterochromatin organization, but they are not fully known. Here, using several molecular and biochemical approaches, we report that Vgl1, a member of a large family of multiple KH-domain proteins, collectively known as vigilins, is indispensable for the heterochromatin-mediated gene silencing in S. pombe ChIP analysis revealed that Vgl1 binds to pericentromeric heterochromatin in an RNA-dependent manner and that Vgl1 deletion leads to loss of H3K9 methylation and Swi6 recruitment to centromeric and telomeric heterochromatic loci. Furthermore, we show that Vgl1 interacts with the H3K9 methyltransferase, Clr4, and that loss of Vgl1 impairs Clr4 recruitment to heterochromatic regions of the genome. These findings uncover a novel role for Vgl1 as a key regulator in heterochromatin-mediated gene silencing in S. pombe.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genoma Fúngico , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...