Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 14(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786950

RESUMEN

Water pollution remains a critical concern, one necessitated by rapidly increasing industrialization and urbanization. Among the various strategies for water purification, membrane technology stands out, with polyethersulfone (PES) often being the material of choice due to its robust mechanical properties, thermal stability, and chemical resistance. However, PES-based membranes tend to exhibit low hydrophilicity, leading to reduced flux and poor anti-fouling performance. This study addresses these limitations by incorporating titanium dioxide nanotubes (TiO2NTs) into PES nanofiltration membranes to enhance their hydrophilic properties. The TiO2NTs, characterized through FTIR, XRD, BET, and SEM, were embedded in PES at varying concentrations using a non-solvent induced phase inversion (NIPS) method. The fabricated mixed matrix membranes (MMMs) were subjected to testing for water permeability and solute rejection capabilities. Remarkably, membranes with a 1 wt% TiO2NT loading displayed a significant increase in pure water flux, from 36 to 72 L m2 h-1 bar-1, a 300-fold increase in selectivity compared to the pristine sample, and a dye rejection of 99%. Furthermore, long-term stability tests showed only a slight reduction in permeate flux over a time of 36 h, while dye removal efficiency was maintained, thus confirming the membrane's stability. Anti-fouling tests revealed a 93% flux recovery ratio, indicating excellent resistance to fouling. These results suggest that the inclusion of TiO2 NTs offers a promising avenue for the development of efficient and stable anti-fouling PES-based membranes for water purification.

2.
Chemosphere ; 349: 140967, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122939

RESUMEN

Developing electroactive membranes for filtration has gained importance owing to their effectiveness in mitigating the long-lasting issue of fouling faced with traditional membranes. Here, we developed thin electroactive metallic films on to stainless steel mesh (SSM) using electrodeposition method and evaluated their performance for microalgae harvesting via electro filtration. The effect of electrodeposition parameters on membrane formulation and operating parameters for electro filtration, both in continuous and intermittent modes, were evaluated and optimum values were obtained using response surface methodology (RSM). The optimal combination of electrodeposition parameters is 1000 µA/cm2 and 5 min for deposition current density and time, respectively. Whereas the electric field strength of 20 V/mm with an application time of 1 min is suggested to be the optimal combination of electro filtration parameters for maximized flux recovery and corresponding experimental rejection efficiency of more than 90%. Overall, this research contributes to a better understanding of the parameters governing electro-filtration and offers insights for improving the performance of membrane-based microalgae harvesting systems.


Asunto(s)
Microalgas , Membranas Artificiales , Filtración , Electricidad , Membranas
3.
Chemosphere ; 324: 138197, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36841456

RESUMEN

The intensification of biochar into fluidized bed membrane bioreactor was investigated to mitigate membrane fouling. Different biochars from algal biomass were produced and used as biomaterials for wastewater treatment. In this study, different macroalgal biochar was synthesized at different pyrolysis temperatures and characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Brunauer Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FTIR) techniques to implicate their effect on membrane fouling reduction in fluidized bed membrane bioreactor. The combined effect of macroalgal biochars and biocarriers with gas sparging was evaluated for fouling mitigation. Macroalgal biochar curtailed membrane fouling effectively at low gas sparging rate. Transmembrane pressure (TMP) was reduced to 0.053 bar; under the fluidization of biochar-650 and biocarriers with gas sparging; from 0.27 bar (gas sparging only). Combined effect of gas sparging, biocarriers and biochar-650 instigated 92.1% fouling reduction in comparative to gas sparging alone. Mechanical scouring driven by biocarriers could reduce fouling due to removing surface deposit of foulants from membrane surface effectively and biochar can efficiently adsorb foulants because of its active functional groups resulting in reduction of colloidal fouling. The addition of divalent ions (Ca2+) further enhanced the fouling reduction in fluidized bed membrane bioreactor.


Asunto(s)
Aguas Residuales , Purificación del Agua , Membranas Artificiales , Reactores Biológicos , Purificación del Agua/métodos
4.
Chemosphere ; 308(Pt 2): 136160, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36030940

RESUMEN

In this study, we demonstrate the fabrication of a thoroughly metallic electro-conductive membrane by using simple filtration to uniformly coat AgNWs dispersion through stainless steel (SUS)-mesh, which functions both as filter and a flexible conductive substrate. The as-prepared AgNWs networks layer on the SUS-mesh was further strengthened by electroplating Ag layers (P-SUS membrane); exhibiting an overall electrical conductivity of 9.2 × 104 S/m, which is up to 42 times greater than the conductivity of pristine SUS-mesh. The P-SUS membrane exhibited adequate physical durability against chemical and mechanical stresses under prolonged filtration, and high pure water flux of 534 ± 54 LMH/bar. This electro-membrane displayed the anticipated flux recovery in harvesting microalgae (Chlorella sp. HS-2) when filtration was done with the membrane used as a cathode: micro-sized bubbles, generated from the cathodic membrane, functioned to detach the foulants and recover the relative flux to a significant level. The P-SUS membrane indeed possesses necessary traits that the polymer-support membrane lacks, in terms of not only electrical conductivity and mechanical strength but also filtration performance with anti-fouling capability, all of which are of necessity to be considered workable electroconductive membrane.


Asunto(s)
Chlorella , Acero Inoxidable , Conductividad Eléctrica , Filtración , Membranas Artificiales , Polímeros , Agua
5.
Chemosphere ; 281: 130758, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34000658

RESUMEN

Microalgae-led wastewater treatment is a promising biorefinery approach to promote environmental and economical sustainability. In this study, Chlorella vulgaris (C. vulgaris) was employed for the bioremediation of textile wastewater (TWW) and biodiesel production. C. vulgaris is cultivated in undiluted and diluted TWW (50%). Cultivation in freshwater containing BG11 medium was set as a control. Results show the highest growth (1.62 ± 0.12 OD680) in diluted TWW followed by BG11 medium (1.56 ± 0.15 OD680) and undiluted TWW (0.89 ± 0.11 OD680). The highest methylene blue decolorization of 99.7% was observed in diluted TWW as compared to 98.5% in undiluted TWW. Morever, COD removal efficiency was also higher (99.7 ± 4.2%) in diluted TWW than BG11 medium (94.4 ± 3.5%) and undiluted TWW (76.3 ± 2.8%). For all treatment, more than 80% nitrogen and phosphorous removal were achieved. Otther than this, fatty acids methyl ester (FAME) yield in diluted TWW was higher (11.07 mg g-1) than the undiluted TWW (9.12 mg L-1). Major FAME were palmitic acid (C16:0) and linolenoic acid (C18:3) which are suitable for biodiesel production. All these results suggest that C. vulgaris can be cultivated in both diluted and undiluted TWW for biodiesel production. However, cultivation in undiluted TWW is more favorable as it displaces the need for freshwater addition in the growth medium.


Asunto(s)
Chlorella vulgaris , Microalgas , Biodegradación Ambiental , Biocombustibles , Biomasa , Textiles , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA