Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36980245

RESUMEN

The c-Jun N-terminal kinases (JNKs) are a family of proteins that, once activated by stress stimuli, can alter neuronal functions and survival. The JNK cascade plays a crucial role in the post-synaptic neuronal compartment by altering its structural organization and leading, at worst, to an overall impairment of neuronal communication. Increasing evidence suggests that synaptic impairment is the first neurodegenerative event in Alzheimer's disease (AD). To better elucidate this mechanism, we longitudinally studied 5xFAD mice at three selected time points representative of human AD symptom progression. We tested the mice cognitive performance by using the radial arm water maze (RAWM) in parallel with biochemical evaluations of post-synaptic enriched protein fraction and total cortical parenchyma. We found that 5xFAD mice presented a strong JNK activation at 3.5 months of age in the post-synaptic enriched protein fraction. This JNK activation correlates with a structural alteration of the post-synaptic density area and with memory impairment at this early stage of the disease that progressively declines to cause cell death. These findings pave the way for future studies on JNK as a key player in early neurodegeneration and as an important therapeutic target for the development of new compounds able to tackle synaptic impairment in the early phase of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Proteínas Quinasas JNK Activadas por Mitógenos , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Fosforilación , Modelos Animales de Enfermedad
3.
Cells ; 11(13)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805092

RESUMEN

The human brain is the most complex organ in biology. This complexity is due to the number and the intricate connections of brain cells and has so far limited the development of in vitro models for basic and applied brain research. We decided to create a new, reliable, and cost-effective in vitro system based on the Nichoid, a 3D microscaffold microfabricated by two-photon laser polymerization technology. We investigated whether these 3D microscaffold devices can create an environment allowing the manipulation, monitoring, and functional assessment of a mixed population of brain cells in vitro. With this aim, we set up a new model of hippocampal neurons and astrocytes co-cultured in the Nichoid microscaffold to generate brain micro-tissues of 30 µm thickness. After 21 days in culture, we morphologically characterized the 3D spatial organization of the hippocampal astrocytes and neurons within the microscaffold, and we compared our observations to those made using the classical 2D co-culture system. We found that the co-cultured cells colonized the entire volume of the 3D devices. Using confocal microscopy, we observed that within this period the different cell types had become well-differentiated. This was further elaborated with the use of drebrin, PSD-95, and synaptophysin antibodies that labeled the majority of neurons, both in the 2D as well as in the 3D co-cultures. Using scanning electron microscopy, we found that neurons in the 3D co-culture displayed a significantly larger amount of dendritic protrusions compared to neurons in the 2D co-culture. This latter observation indicates that neurons growing in a 3D environment may be more prone to form connections than those co-cultured in a 2D condition. Our results show that the Nichoid can be used as a 3D device to investigate the structure and morphology of neurons and astrocytes in vitro. In the future, this model can be used as a tool to study brain cell interactions in the discovery of important mechanisms governing neuronal plasticity and to determine the factors that form the basis of different human brain diseases. This system may potentially be further used for drug screening in the context of various brain diseases.


Asunto(s)
Astrocitos , Encefalopatías , Encefalopatías/metabolismo , Técnicas de Cocultivo , Hipocampo , Humanos , Neuronas/metabolismo
4.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35456931

RESUMEN

c-Jun N-terminal kinases (JNKs) are stress-activated serine/threonine protein kinases belonging to the mitogen-activated protein kinase (MAPK) family. Among them, JNK3 is selectively expressed in the central nervous system, cardiac smooth muscle, and testis. In addition, it is the most responsive JNK isoform to stress stimuli in the brain, and it is involved in synaptic dysfunction, an essential step in neurodegenerative processes. JNK3 pathway is organized in a cascade of amplification in which signal transduction occurs by stepwise, highly controlled phosphorylation. Since different MAPKs share common upstream activators, pathway specificity is guaranteed by scaffold proteins such as JIP1 and ß-arrestin2. To better elucidate the physiological mechanisms regulating JNK3 in neurons, and how these interactions may be involved in synaptic (dys)function, we used (i) super-resolution microscopy to demonstrate the colocalization among JNK3-PSD95-JIP1 and JNK3-PSD95-ß-arrestin2 in cultured hippocampal neurons, and (ii) co-immunoprecipitation techniques to show that the two scaffold proteins and JNK3 can be found interacting together with PSD95. The protein-protein interactions that govern the formation of these two complexes, JNK3-PSD95-JIP1 and JNK3-PSD95-ß-arrestin2, may be used as targets to interfere with their downstream synaptic events.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Homólogo 4 de la Proteína Discs Large/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Fosforilación , beta-Arrestina 1
5.
Trends Endocrinol Metab ; 33(1): 50-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794851

RESUMEN

Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/etiología , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Productos Finales de Glicación Avanzada/metabolismo , Humanos
6.
BMC Biol ; 19(1): 256, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34911542

RESUMEN

BACKGROUND: Rett syndrome (RTT) is a monogenic X-linked neurodevelopmental disorder characterized by loss-of-function mutations in the MECP2 gene, which lead to structural and functional changes in synapse communication, and impairments of neural activity at the basis of cognitive deficits that progress from an early age. While the restoration of MECP2 in animal models has been shown to rescue some RTT symptoms, gene therapy intervention presents potential side effects, and with gene- and RNA-editing approaches still far from clinical application, strategies focusing on signaling pathways downstream of MeCP2 may provide alternatives for the development of more effective therapies in vivo. Here, we investigate the role of the c-Jun N-terminal kinase (JNK) stress pathway in the pathogenesis of RTT using different animal and cell models and evaluate JNK inhibition as a potential therapeutic approach. RESULTS: We discovered that the c-Jun N-terminal kinase (JNK) stress pathway is activated in Mecp2-knockout, Mecp2-heterozygous mice, and in human MECP2-mutated iPSC neurons. The specific JNK inhibitor, D-JNKI1, promotes recovery of body weight and locomotor impairments in two mouse models of RTT and rescues their dendritic spine alterations. Mecp2-knockout presents intermittent crises of apnea/hypopnea, one of the most invalidating RTT pathological symptoms, and D-JNKI1 powerfully reduces this breathing dysfunction. Importantly, we discovered that also neurons derived from hiPSC-MECP2 mut show JNK activation, high-phosphorylated c-Jun levels, and cell death, which is not observed in the isogenic control wt allele hiPSCs. Treatment with D-JNKI1 inhibits neuronal death induced by MECP2 mutation in hiPSCs mut neurons. CONCLUSIONS: As a summary, we found altered JNK signaling in models of RTT and suggest that D-JNKI1 treatment prevents clinical symptoms, with coherent results at the cellular, molecular, and functional levels. This is the first proof of concept that JNK plays a key role in RTT and its specific inhibition offers a new and potential therapeutic tool to tackle RTT.


Asunto(s)
Síndrome de Rett , Animales , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas , Ratones , Neuronas/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/terapia , Sinapsis/metabolismo
7.
Eur J Histochem ; 65(s1)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34459572

RESUMEN

The SUMOylation machinery is a regulator of neuronal activity and synaptic plasticity. It is composed of SUMO isoforms and specialized enzymes named E1, E2 and E3 SUMO ligases. Recent studies have highlighted how SUMO isoforms and E2 enzymes localize with synaptic markers to support previous functional studies but less information is available on E3 ligases. PIAS proteins - belonging to the protein inhibitor of activated STAT (PIAS) SUMO E3-ligase family - are the best-characterized SUMO E3-ligases and have been linked to the formation of spatial memory in rodents. Whether however they exert their function co-localizing with synaptic markers is still unclear. In this study, we applied for the first time structured illumination microscopy (SIM) to PIAS ligases to investigate the co-localization of PIAS1 and PIAS3 with synaptic markers in hippocampal and cortical murine neurons. The results indicate partial co-localization of PIAS1 and PIAS3 with synaptic markers in hippocampal neurons and much rarer occurrence in cortical neurons. This is in line with previous super-resolution reports describing the co-localization with synaptic markers of other components of the SUMOylation machinery.


Asunto(s)
Corteza Cerebral/enzimología , Hipocampo/enzimología , Microscopía/métodos , Neuronas/enzimología , Proteínas Inhibidoras de STAT Activados/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Corteza Cerebral/ultraestructura , Hipocampo/ultraestructura , Ratones , Neuronas/ultraestructura
8.
Cells ; 9(10)2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998477

RESUMEN

The c-Jun N-terminal kinase 3 (JNK3) is the JNK isoform mainly expressed in the brain. It is the most responsive to many stress stimuli in the central nervous system from ischemia to Aß oligomers toxicity. JNK3 activity is spatial and temporal organized by its scaffold protein, in particular JIP-1 and ß-arrestin-2, which play a crucial role in regulating different cellular functions in different cellular districts. Extensive evidence has highlighted the possibility of exploiting these adaptors to interfere with JNK3 signaling in order to block its action. JNK plays a key role in the first neurodegenerative event, the perturbation of physiological synapse structure and function, known as synaptic dysfunction. Importantly, this is a common mechanism in many different brain pathologies. Synaptic dysfunction and spine loss have been reported to be pharmacologically reversible, opening new therapeutic directions in brain diseases. Being JNK3-detectable at the peripheral level, it could be used as a disease biomarker with the ultimate aim of allowing an early diagnosis of neurodegenerative and neurodevelopment diseases in a still prodromal phase.


Asunto(s)
Encéfalo/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/genética , Enfermedades Neurodegenerativas/genética , Trastornos del Neurodesarrollo/genética , Biomarcadores/metabolismo , Encéfalo/patología , Humanos , Sistema de Señalización de MAP Quinasas/genética , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Fosforilación
9.
Neurobiol Dis ; 140: 104812, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32087286

RESUMEN

Deficiency of the E3 ubiquitin ligase UBE3A leads to the neurodevelopmental disorder Angelman syndrome (AS), while higher levels are linked to autism spectrum disorder. The mechanisms underlying the downstream effects of UBE3A loss or gain of function in these disorders are still not well understood, and treatments are still lacking. Here, using the Ube3a maternal loss (Ube3am-/p+) mouse model, we report an important JNK signaling activation in the hippocampus, cortex and cerebellum correlating with the onset of behavioral defects and biochemical marker alterations in the post-synaptic element, suggesting important spine pathology. JNK activation occurs at 7 and persists up till 23 weeks in Ube3am-/p+ mice in two different cellular compartments: the nucleus and the post-synaptic protein-enriched fraction. To study JNK's role in Ube3am-/p+ pathology we treated mice with the specific JNK inhibitor peptide, D-JNKI1, from 7 to 23 weeks of age. Preventing JNK action in vivo restores the post-synaptic protein-enriched fraction defects and the cognitive impairment in these mice. Our results imply a critical role of UBE3A-JNK signaling in the pathogenesis of UBE3A-related disorders. In particular, it was clear that JNK is a key player in regulating AS synaptic alterations and the correlated cognitive impairments, in fact, its specific inhibition tackles Ube3am-/p+ pathology. This study sheds new light on the neuronal functions of UBE3A and offers new prospects for understanding the pathogenesis of UBE3A-related disorders.


Asunto(s)
Síndrome de Angelman/metabolismo , Disfunción Cognitiva/metabolismo , Sistema de Señalización de MAP Quinasas , Sinapsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Neuronas/metabolismo
10.
Neuroscience ; 393: 196-205, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30315879

RESUMEN

Pathological Tau (P-Tau) leads to dementia and neurodegeneration in tauopathies, including Alzheimer's disease. The P301L transgenic mice well mimic human tauopathy features; P-Tau localizes also at the dendritic spine level and this correlates with synaptic markers down-regulation. Importantly, tg females present a more severe pathology compared to male mice. We describe JNK activation in P301L-tg mice, characterizing by P-JNK and P-c-Jun, cleaved-Caspase-3, P-PSD95 and P-Tau (direct JNK-targets) increased levels in tg vs control mice. These data indicate that JNK stress pathway is involved in neuronal degenerative mechanisms of this mouse model. In addition, P-JNK level is higher in females compared to male tg mice, underlying a sexual dimorphism in the JNK pathway activation. The behavioral studies highlight that tg females present major cognitive and locomotor defects, strongly correlated with a more severe synaptic injury, in comparison to tg male. Notably, at the dendritic spine level, JNK is powerfully activated and its level reveals a sexual dimorphism that is coherent with behavioral defects and spine pathology. The P301L's synaptic pathology is characterized by a strong increase of P-PSD95/PSD95 and P-JNK/JNK ratios and by an augmented level of cleaved-Caspase-3 and a decrease of Drebrin level in the post-synaptic elements. These results suggest that JNK plays a key role in synaptopathy of P301L mice. Importantly, until now, there are any efficient treatments against synaptic pathology and JNK could represent an interesting target to tackle P-Tau-induced synaptic pathology. It will be important to test specific JNK inhibitors to verify their potential neuroprotective effect.


Asunto(s)
Emparejamiento Cromosómico/fisiología , Factores Sexuales , Estrés Fisiológico/fisiología , Tauopatías/patología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Animales , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Femenino , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Fármacos Neuroprotectores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...