Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CPT Pharmacometrics Syst Pharmacol ; 10(3): 220-229, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33501768

RESUMEN

A semimechanistic pharmacokinetic (PK)/receptor occupancy (RO) model was constructed to differentiate a next generation anti-NKG2A monoclonal antibody (KSQ mAb) from monalizumab, an immune checkpoint inhibitor in multiple clinical trials for the treatment of solid tumors. A three-compartment model incorporating drug PK, biodistribution, and NKG2A receptor interactions was parameterized using monalizumab PK, in vitro affinity measurements for both monalizumab and KSQ mAb, and receptor burden estimates from the literature. Following calibration against monalizumab PK data in patients with rheumatoid arthritis, the model successfully predicted the published PK and RO observed in gynecological tumors and in patients with squamous cell carcinoma of the head and neck. Simulations predicted that the KSQ mAb requires a 10-fold lower dose than monalizumab to achieve a similar RO over a 3-week period following q3w intravenous (i.v.) infusion dosing. A global sensitivity analysis of the model indicated that the drug-target binding affinity greatly affects the tumor RO and that an optimal affinity is needed to balance RO with enhanced drug clearance due to target mediated drug disposition. The model predicted that the KSQ mAb can be dosed over a less frequent regimen or at lower dose levels than the current monalizumab clinical dosing regimen of 10 mg/kg q2w. Either dosing strategy represents a competitive advantage over the current therapy. The results of this study demonstrate a key role for mechanistic modeling in identifying optimal drug parameters to inform and accelerate progression of mAb to clinical trials.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Inhibidores de Puntos de Control Inmunológico/farmacocinética , Células Asesinas Naturales/efectos de los fármacos , Subfamília C de Receptores Similares a Lectina de Células NK/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Administración Intravenosa , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Simulación por Computador , Relación Dosis-Respuesta a Droga , Desarrollo de Medicamentos , Estudios de Evaluación como Asunto , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Tasa de Depuración Metabólica , Ratones , Modelos Animales , Subfamília C de Receptores Similares a Lectina de Células NK/química , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Sensibilidad y Especificidad , Distribución Tisular
2.
J Am Chem Soc ; 138(11): 3806-12, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-26918528

RESUMEN

Integral membrane proteins play essential roles in all living systems; however, major technical hurdles challenge analyses of this class of proteins. Biophysical approaches that provide structural information to complement and leverage experimentally determined and computationally predicted structures are urgently needed. Herein we present the application of luminescence resonance energy transfer (LRET) for investigating the interactions of the polytopic membrane-bound oligosaccharyl transferases (OTases) with partner substrates. Monomeric OTases, such as the PglBs from Campylobacter jejuni and Campylobacter lari, catalyze transfer of glycans from membrane-associated undecaprenol diphosphate-linked substrates to proteins in the bacterial periplasm. LRET-based distance measurements are enabled by the inclusion of an encoded N-terminal lanthanide-binding tag (LBT), and LRET between the luminescent (LBT)-Tb(3+) donor complex and fluorescently labeled peptide and glycan substrates provides discrete distance measurements across the span of the membrane. LRET-based measurements of detergent-solubilized PglB from C. lari allowed direct comparison with the distances based on the previously reported the C. lari PglB crystal structure, thereby validating the approach in a defined system. Distance measurements between peptide and glycan substrates and the C. jejuni PglB offer new experimental information on substrate binding to the related, but structurally uncharacterized, eukaryotic OTase.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Hexosiltransferasas/química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Campylobacter jejuni/enzimología , Colorantes Fluorescentes/química , Glicosilación , Hexosiltransferasas/metabolismo , Cinética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Terbio/química
3.
Biochim Biophys Acta ; 1798(6): 1041-6, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19766589

RESUMEN

The pH (low) insertion peptide (pHLIP) has exceptional characteristics: at neutral pH it is an unstructured monomer in solution or when bound to lipid bilayer surfaces, and it inserts across a lipid bilayer as a monomeric alpha-helix at acidic pH. The peptide targets acidic tissues in vivo and may be useful in cancer biology for delivery of imaging or therapeutic molecules to acidic tumors. To find ways to vary its useful properties, we have designed and analyzed pHLIP sequence variants. We find that each of the Asp residues in the transmembrane segment is critical for solubility and pH-dependent membrane insertion of the peptide. Changing both of the Asp residues in the transmembrane segment to Glu, inserting an additional Asp into the transmembrane segment, or replacing either of the Asp residues with Ala leads to aggregation and/or loss of pH-dependent membrane insertion of the peptide. However, variants with either of the Asp residues changed to Glu remained soluble in an aqueous environment and inserted into the membrane at acidic pH with a higher pK(app) of membrane insertion.


Asunto(s)
Membrana Celular/química , Sistemas de Liberación de Medicamentos , Proteínas de la Membrana/química , Animales , Humanos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Estructura Secundaria de Proteína
4.
Biochemistry ; 49(4): 782-92, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20025247

RESUMEN

Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Forster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor-acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 muM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA-SecYEG structure.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Escherichia coli/enzimología , Proteínas de Transporte de Membrana/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Canales de Translocación SEC , Proteína SecA
5.
Chem Biol Drug Des ; 72(2): 140-6, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18637988

RESUMEN

Perturbations of the chemical shifts of a small subset of residues in the catalytically active domain of Escherichia coli signal peptidase I (SPase I) upon binding signal peptide suggest the contact surface on the enzyme for the substrate. SPase I, an integral membrane protein, is vital to preprotein transport in prokaryotic and eukaryotic secretory systems; it binds and proteolyses the N-terminal signal peptide of the preprotein, permitting folding and localization of the mature protein. Employing isotopically labeled C-terminal E. coli SPase I Delta2-75 and an unlabeled soluble synthetic alkaline phosphatase signal peptide, SPase I Delta2-75 was titrated with the signal peptide and 2D (1)H-(15)N heteronuclear single-quantum correlation nuclear magnetic resonance spectra revealed chemical shifts of specific enzyme residues sensitive to substrate binding. These residues were identified by 3D HNCACB, 3D CBCA(CO)NH, and 3D HN(CO) experiments. Residues Ile80, Glu82, Gln85, Ile86, Ser88, Gly89, Ser90, Met91, Leu95, Ile101, Gly109, Val132, Lys134, Asp142, Ile144, Lys145, and Thr234, alter conformation and are likely all in, or adjacent to, the substrate binding site. The remainder of the enzyme structure is unperturbed. Ramifications for conformational changes for substrate docking and catalysis are discussed.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Señales de Clasificación de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de la Membrana/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , Serina Endopeptidasas/genética , Especificidad por Sustrato
6.
Biochim Biophys Acta ; 1778(4): 937-44, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18177734

RESUMEN

Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.


Asunto(s)
Proteínas de la Membrana/química , Serina Endopeptidasas/química , Secuencia de Aminoácidos , Detergentes/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/aislamiento & purificación , Datos de Secuencia Molecular , Serina Endopeptidasas/aislamiento & purificación , Soluciones , Temperatura
7.
J Mol Biol ; 365(3): 637-48, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17084862

RESUMEN

SecA, an ATPase crucial to the Sec-dependent translocation machinery in Escherichia coli, recognizes and directly binds the N-terminal signal peptide of an exported preprotein. This interaction plays a central role in the targeting and transport of preproteins via the SecYEG channel. Here we identify the signal peptide binding groove (SPBG) on SecA addressing a key issue regarding the SecA-preprotein interaction. We employ a synthetic signal peptide containing the photoreactive benzoylphenylalanine to efficiently and specifically label SecA containing a unique Factor Xa site. Comparison of the photolabeled fragment from the subsequent proteolysis of several SecAs, which vary only in the location of the Factor Xa site, reveals one 53 residue segment in common with the entire series. The covalently modified SecA segment produced is the same in aqueous solution and in lipid vesicles. This spans amino acid residues 269 to 322 of the E. coli protein, which is distinct from a previously proposed signal peptide binding site, and contributes to a hydrophobic peptide binding groove evident in molecular models of SecA.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Etiquetas de Fotoafinidad/metabolismo , Señales de Clasificación de Proteína , Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biotina/química , Biotina/metabolismo , Factor Xa/química , Factor Xa/metabolismo , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Unión Proteica , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Canales de Translocación SEC , Proteína SecA
8.
Biochemistry ; 44(42): 13987-96, 2005 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-16229488

RESUMEN

SecA, the peripheral subunit of the Escherichia coli preprotein translocase, interacts with a number of ligands during export, including signal peptides, membrane phospholipids, and nucleotides. Using fluorescence resonance energy transfer (FRET), we studied the interactions of wild-type (WT) and mutant SecAs with IAEDANS-labeled signal peptide, and how these interactions are modified in the presence of other transport ligands. We find that residues on the third alpha-helix in the preprotein cross-linking domain (PPXD) are important for the interaction of SecA and signal peptide. For SecA in aqueous solution, saturation binding data using FRET analysis fit a single-site binding model and yielded a Kd of 2.4 microM. FRET is inhibited for SecA in lipid vesicles relative to that in aqueous solution at a low signal peptide concentration. The sigmoidal nature of the binding curve suggests that SecA in lipids has two conformational states; our results do not support different oligomeric states of SecA. Using native gel electrophoresis, we establish signal peptide-induced SecA monomerization in both aqueous solution and lipid vesicles. Whereas the affinity of SecA for signal peptide in an aqueous environment is unaffected by temperature or the presence of nucleotides, in lipids the affinity decreases in the presence of ADP or AMP-PCP but increases at higher temperature. The latter finding is consistent with SecA existing in an elongated form while inserting the signal peptide into membranes.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Señales de Clasificación de Proteína , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Transferencia Resonante de Energía de Fluorescencia , Calor , Sondas Moleculares , Canales de Translocación SEC , Proteína SecA , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...