Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727309

RESUMEN

The activation of endothelial cells is crucial for immune defense mechanisms but also plays a role in the development of atherosclerosis. We have previously shown that inflammatory stimulation of endothelial cells on top of elevated lipoprotein/cholesterol levels accelerates atherogenesis. The aim of the current study was to investigate how chronic endothelial inflammation changes the aortic transcriptome of mice at normal lipoprotein levels and to compare this to the inflammatory response of isolated endothelial cells in vitro. We applied a mouse model expressing constitutive active IκB kinase 2 (caIKK2)-the key activator of the inflammatory NF-κB pathway-specifically in arterial endothelial cells and analyzed transcriptomic changes in whole aortas, followed by pathway and network analyses. We found an upregulation of cell death and mitochondrial beta-oxidation pathways with a predicted increase in endothelial apoptosis and necrosis and a simultaneous reduction in protein synthesis genes. The highest upregulated gene was ACE2, the SARS-CoV-2 receptor, which is also an important regulator of blood pressure. Analysis of isolated human arterial and venous endothelial cells supported these findings and also revealed a reduction in DNA replication, as well as repair mechanisms, in line with the notion that chronic inflammation contributes to endothelial dysfunction.


Asunto(s)
Colesterol , Células Endoteliales , Inflamación , Animales , Humanos , Células Endoteliales/metabolismo , Ratones , Inflamación/patología , Inflamación/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Arterias/metabolismo , Arterias/patología , Transcriptoma/genética , Aorta/metabolismo , Aorta/patología , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Aterosclerosis/patología , Quinasa I-kappa B/metabolismo , Masculino , FN-kappa B/metabolismo
2.
J Cachexia Sarcopenia Muscle ; 15(2): 562-574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38302863

RESUMEN

BACKGROUND: Cancer-associated cachexia (CAC) is a debilitating syndrome associated with poor quality of life and reduced life expectancy of cancer patients. CAC is characterized by unintended body weight reduction due to muscle and adipose tissue loss. A major hallmark of CAC is systemic inflammation. Several non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested for CAC treatment, yet no single medication has proven reliable. R-ketorolac (RK) is the R-enantiomer of a commonly used NSAID. The effect of RK on CAC has not yet been evaluated. METHODS: Ten- to 11-week-old mice were inoculated with C26 or CHX207 cancer cells or vehicle control (phosphate-buffered saline [PBS]). After cachexia onset, 2 mg/kg RK or PBS was administered daily by oral gavage. Body weight, food intake and tumour size were continuously measured. At study endpoints, blood was drawn, mice were sacrificed and tissues were excised. Immune cell abundance was analysed using a Cytek® Aurora spectral flow cytometer. Cyclooxygenase (COX) activity was determined in lung homogenates using a fluorometric kit. Muscle tissues were analysed for mRNA and protein expression by quantitative real-time PCR and western blotting analysis, respectively. Muscle fibre size was determined on histological slides after haematoxylin/eosin staining. RESULTS: Ten-day survival rate of C26-bearing animals was 10% while RK treatment resulted in a 100% survival rate (P = 0.0009). Chemotherapy resulted in a 10% survival rate 14 days after treatment initiation, but all mice survived upon co-medication with RK and cyclophosphamide (P = 0.0001). Increased survival was associated with a protection from body weight loss in C26 (-0.61 ± 1.82 vs. -4.48 ± 2.0 g, P = 0.0004) and CHX207 (-0.49 ± 0.33 vs. -2.49 ± 0.93 g, P = 0.0003) tumour-bearing mice treated with RK, compared with untreated mice. RK ameliorated musculus quadriceps (-1.7 ± 7.1% vs. -27.8 ± 8.3%, P = 0.0007) and gonadal white adipose tissue (-18.8 ± 49% vs. -69 ± 15.6%, P = 0.094) loss in tumour-bearing mice, compared with untreated mice. Mechanistically, RK reduced circulating interleukin-6 (IL-6) concentrations from 334 ± 151 to 164 ± 123 pg/mL (P = 0.047) in C26 and from 93 ± 39 to 35 ± 6 pg/mL (P = 0.0053) in CHX207 tumour-bearing mice. Moreover, RK protected mice from cancer-induced T-lymphopenia (+1.8 ± 42% vs. -49.2 ± 12.1% in treated vs. untreated mice, respectively). RK was ineffective in ameliorating CAC in thymus-deficient nude mice, indicating that the beneficial effect of RK depends on T-cells. CONCLUSIONS: RK improved T-lymphopenia and decreased systemic IL-6 concentrations, resulting in alleviation of cachexia and increased survival of cachexigenic tumour-bearing mice, even under chemotherapy and independent of COX inhibition. Considering its potential, we propose that the use of RK should be investigated in patients suffering from CAC.


Asunto(s)
Linfopenia , Neoplasias , Humanos , Ratones , Animales , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/metabolismo , Ketorolaco/metabolismo , Ketorolaco/farmacología , Ketorolaco/uso terapéutico , Interleucina-6/metabolismo , Ratones Desnudos , Calidad de Vida , Músculo Esquelético/patología , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Peso Corporal , Antiinflamatorios no Esteroideos/uso terapéutico , Linfopenia/complicaciones , Linfopenia/tratamiento farmacológico , Linfopenia/patología
3.
J Thromb Haemost ; 22(5): 1475-1488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38278417

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) stress is a key feature of lipid-laden macrophages and contributes to the development of atherosclerotic plaques. Blood platelets are known to interact with macrophages and fine-tune effector functions such as inflammasome activation and phagocytosis. However, the effect of platelets on ER stress induction is unknown. OBJECTIVES: The objective of this study is to elucidate the potential of platelets in regulating ER stress in macrophages in vitro. METHODS: Bone marrow-derived macrophages and RAW 264.7 cells were incubated with isolated murine platelets, and ER stress and inflammation markers were determined by reverse transcription-quantitative polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. ER morphology was investigated by electron microscopy. Cell viability, lipid accumulation, and activation were measured by flow cytometry. To gain mechanistic insights, coincubation experiments were performed with platelet decoys/releasates as well as lipopolysaccharide, blocking antibodies, and TLR4 inhibitors. RESULTS: Coincubation of platelets and macrophages led to elevated levels of ER stress markers (BIP, IRE1α, CHOP, and XBP1 splicing) in murine and human macrophages, which led to a pronounced enlargement of the ER. Macrophage ER stress was accompanied by increased release of proinflammatory cytokines and intracellular lipid accumulation, but not cell death. Platelet decoys, but not platelet releasates or lysate from other cells, phenocopied the effect of platelets. Blocking TLR4 inhibited inflammatory activation of macrophages but did not affect ER stress induction by platelet coincubation. CONCLUSION: To our knowledge, this study is the first to demonstrate that platelets induce ER stress and unfolded protein response in macrophages by heat-sensitive membrane proteins, independent of inflammatory activation of macrophages.


Asunto(s)
Plaquetas , Estrés del Retículo Endoplásmico , Macrófagos , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas , Proteína 1 de Unión a la X-Box , Animales , Plaquetas/metabolismo , Macrófagos/metabolismo , Humanos , Ratones , Células RAW 264.7 , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Receptor Toll-Like 4/metabolismo , Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Citocinas/metabolismo , Chaperón BiP del Retículo Endoplásmico , Factor de Transcripción CHOP/metabolismo , Transducción de Señal , Lipopolisacáridos/farmacología , Proteínas de Choque Térmico/metabolismo , Metabolismo de los Lípidos , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Supervivencia Celular
5.
Front Cardiovasc Med ; 10: 1175673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396582

RESUMEN

Background and aims: Neutrophils drive atheroprogression and directly contribute to plaque instability. We recently identified signal transducer and activator of transcription 4 (STAT4) as a critical component for bacterial host defense in neutrophils. The STAT4-dependent functions of neutrophils in atherogenesis are unknown. Therefore, we investigated a contributory role of STAT4 in neutrophils during advanced atherosclerosis. Methods: We generated myeloid-specific Stat4ΔLysMLdlr-/-, neutrophil-specific Stat4ΔS100A8Ldlr-/-, and control Stat4fl/flLdlr-/- mice. All groups were fed a high-fat/cholesterol diet (HFD-C) for 28 weeks to establish advanced atherosclerosis. Aortic root plaque burden and stability were assessed histologically by Movat pentachrome staining. Nanostring gene expression analysis was performed on isolated blood neutrophils. Flow cytometry was utilized to analyze hematopoiesis and blood neutrophil activation. In vivo homing of neutrophils to atherosclerotic plaques was performed by adoptively transferring prelabeled Stat4ΔLysMLdlr-/- and Stat4fl/flLdlr-/- bone marrow cells into aged atherosclerotic Apoe-/- mice and detected by flow cytometry. Results: STAT4 deficiency in both myeloid-specific and neutrophil-specific mice provided similar reductions in aortic root plaque burden and improvements in plaque stability via reduction in necrotic core size, improved fibrous cap area, and increased vascular smooth muscle cell content within the fibrous cap. Myeloid-specific STAT4 deficiency resulted in decreased circulating neutrophils via reduced production of granulocyte-monocyte progenitors in the bone marrow. Neutrophil activation was dampened in HFD-C fed Stat4ΔLysMLdlr-/- mice via reduced mitochondrial superoxide production, attenuated surface expression of degranulation marker CD63, and reduced frequency of neutrophil-platelet aggregates. Myeloid-specific STAT4 deficiency diminished expression of chemokine receptors CCR1 and CCR2 and impaired in vivo neutrophil trafficking to atherosclerotic aorta. Conclusions: Our work indicates a pro-atherogenic role for STAT4-dependent neutrophil activation and how it contributes to multiple factors of plaque instability during advanced atherosclerosis in mice.

6.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865098

RESUMEN

Background and Aims: Neutrophils drive atheroprogression and directly contribute to plaque instability. We recently identified signal transducer and activator of transcription 4 (STAT4) as a critical component for bacterial host defense in neutrophils. The STAT4-dependent functions of neutrophils in atherogenesis are unknown. Therefore, we investigated a contributory role of STAT4 in neutrophils during advanced atherosclerosis. Methods: We generated myeloid-specific Stat4 ΔLysM Ldlr -/- , neutrophil-specific Stat4 ΔS100A8 Ldlr -/- , and control Stat4 fl/fl Ldlr -/- mice. All groups were fed a high-fat/cholesterol diet (HFD-C) for 28 weeks to establish advanced atherosclerosis. Aortic root plaque burden and stability were assessed histologically by Movat Pentachrome staining. Nanostring gene expression analysis was performed on isolated blood neutrophils. Flow cytometry was utilized to analyze hematopoiesis and blood neutrophil activation. In vivo homing of neutrophils to atherosclerotic plaques was performed by adoptively transferring prelabeled Stat4 ΔLysM Ldlr -/- and Stat4 fl/fl Ldlr -/- bone marrow cells into aged atherosclerotic Apoe -/- mice and detected by flow cytometry. Results: STAT4 deficiency in both myeloid-specific and neutrophil-specific mice provided similar reductions in aortic root plaque burden and improvements in plaque stability via reduction in necrotic core size, improved fibrous cap area, and increased vascular smooth muscle cell content within the fibrous cap. Myeloid-specific STAT4 deficiency resulted in decreased circulating neutrophils via reduced production of granulocyte-monocyte progenitors in the bone marrow. Neutrophil activation was dampened in Stat4 ΔLysM Ldlr -/- mice via reduced mitochondrial superoxide production, attenuated surface expression of degranulation marker CD63, and reduced frequency of neutrophil-platelet aggregates. Myeloid-specific STAT4 deficiency diminished expression of chemokine receptors CCR1 and CCR2 and impaired in vivo neutrophil trafficking to atherosclerotic aorta. Conclusions: Our work indicates a pro-atherogenic role for STAT4-dependent neutrophil activation and how it contributes to multiple factors of plaque instability during advanced atherosclerosis in mice.

7.
Front Immunol ; 14: 1134661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911661

RESUMEN

Nuclear factor κB (NF-κB) is a dimeric transcription factor constituted by two of five protein family members. It plays an essential role in inflammation and immunity by regulating the expression of numerous chemokines, cytokines, transcription factors, and regulatory proteins. Since NF-κB is expressed in almost all human cells, it is important to understand its cell type-, tissue-, and stimulus-specific roles as well as its temporal dynamics and disease-specific context. Although NF-κB was discovered more than 35 years ago, many questions are still unanswered, and with the availability of novel technologies such as single-cell sequencing and cell fate-mapping, new fascinating questions arose. In this review, we will summarize current findings on the role of NF-κB in monocytes and macrophages. These innate immune cells show high plasticity and dynamically adjust their effector functions against invading pathogens and environmental cues. Their versatile functions can range from antimicrobial defense and antitumor immune responses to foam cell formation and wound healing. NF-κB is crucial for their activation and balances their phenotypes by finely coordinating transcriptional and epigenomic programs. Thereby, NF-κB is critically involved in inflammasome activation, cytokine release, and cell survival. Macrophage-specific NF-κB activation has far-reaching implications in the development and progression of numerous inflammatory diseases. Moreover, recent findings highlighted the temporal dynamics of myeloid NF-κB activation and underlined the complexity of this inflammatory master regulator. This review will provide an overview of the complex roles of NF-κB in macrophage signal transduction, polarization, inflammasome activation, and cell survival.


Asunto(s)
Monocitos , FN-kappa B , Humanos , FN-kappa B/metabolismo , Monocitos/metabolismo , Inflamasomas/metabolismo , Transducción de Señal , Macrófagos , Citocinas/metabolismo
8.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834530

RESUMEN

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Asunto(s)
Monoacilglicerol Lipasas , Monoglicéridos , Animales , Ratones , Endocannabinoides/metabolismo , Lipólisis , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/genética
9.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166616, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513287

RESUMEN

Atherosclerosis is a chronic, inflammatory disease of the vessel wall where triggered immune cells bind to inflamed endothelium, extravasate and sustain local inflammation. Leukocyte adhesion and extravasation are mediated by adhesion molecules expressed by activated endothelial cells, like intercellular adhesion molecule 1 (ICAM-1). Extracellular adherence protein (Eap) from Staphylococcus aureus binds to a plethora of extracellular matrix proteins, including ICAM-1 and its ligands macrophage-1 antigen (Mac-1, αMß2) and lymphocyte function-associated antigen 1 (LFA-1, αLß2), thereby disrupting the interaction between leukocytes and endothelial cells. We aimed to use Eap to inhibit the interaction of leukocytes with activated endothelial cells in settings of developing and established atherosclerosis in apolipoprotein E (ApoE) deficient mice on high-fat diet. In developing atherosclerosis, Eap treatment reduced circulating platelet-neutrophil aggregates as well as infiltration of T cells and neutrophils into the growing plaque, accompanied by reduced formation of neutrophil extracellular traps (NETs). However, plaque size did not change. Intervention treatment with Eap of already established plaques did not result in cellular or morphological plaque changes, whereas T cell infiltration was increased and thereby again modulated by Eap. We conclude that although Eap leads to cellular changes in developing plaques, clinical implications might be limited as patients are usually treated at a more advanced stage of disease progression. Hence, usage of Eap might be an interesting mechanistic tool for cellular infiltration during plaque development in basic research but not a clinical target.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Molécula 1 de Adhesión Intercelular/genética , Staphylococcus aureus/metabolismo , Células Endoteliales/metabolismo , Antígeno-1 Asociado a Función de Linfocito/genética , Fenotipo
10.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36551650

RESUMEN

Prostate cancer is very frequent and is, in many countries, the third-leading cause of cancer related death in men. While early diagnosis and treatment by surgical removal is often curative, metastasizing prostate cancer has a very bad prognosis. Based on the androgen-dependence of prostate epithelial cells, the standard treatment is blockade of the androgen receptor (AR). However, nearly all patients suffer from a tumor relapse as the metastasizing cells become AR-independent. In our study we show a counter-regulatory link between AR and NF-κB both in human cells and in mouse models of prostate cancer, implying that inhibition of AR signaling results in induction of NF-κB-dependent inflammatory pathways, which may even foster the survival of metastasizing cells. This could be shown by reporter gene assays, DNA-binding measurements, and immune-fluorescence microscopy, and furthermore by a whole set of computational methods using a variety of datasets. Interestingly, loss of PTEN, a frequent genetic alteration in prostate cancer, also causes an upregulation of NF-κB and inflammatory activity. Finally, we present a mathematical model of a dynamic network between AR, NF-κB/IκB, PI3K/PTEN, and the oncogene c-Myc, which indicates that AR blockade may upregulate c-Myc together with NF-κB, and that combined anti-AR/anti-NF-κB and anti-PI3K treatment might be beneficial.

11.
Cell Rep ; 41(6): 111614, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351402

RESUMEN

Phosphatidylinositol 3-kinase catalytic subunit p110ß is involved in tumorigenesis and hemostasis. However, it remains unclear if p110ß also regulates platelet-mediated immune responses, which could have important consequences for immune modulation during anti-cancer treatment with p110ß inhibitors. Thus, we investigate how platelet p110ß affects inflammation and infection. Using a mouse model of Streptococcus pneumoniae-induced pneumonia, we find that both platelet-specific p110ß deficiency and pharmacologic inhibition of p110ß with TGX-221 exacerbate disease pathogenesis by preventing platelet-monocyte and neutrophil interactions, diminishing their infiltration and enhancing bacterial dissemination. Platelet p110ß mediates neutrophil phagocytosis of S. pneumoniae in vitro and curtails bacteremia in vivo. Genetic deficiency or inhibition of platelet p110ß also impairs macrophage recruitment in an independent model of sterile peritonitis. Our results demonstrate that platelet p110ß dysfunction exacerbates pulmonary infection by impeding leukocyte functions. Thereby, our findings provide important insights into the immunomodulatory potential of PI3K inhibitors in bacterial infection.


Asunto(s)
Neumonía Neumocócica , Humanos , Fosfatidilinositol 3-Quinasas/genética , Plaquetas , Leucocitos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Streptococcus pneumoniae
12.
Curr Top Microbiol Immunol ; 436: 255-285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36243848

RESUMEN

Platelets are unique anucleated blood cells that constantly patrol the vasculature to seal and prevent injuries in a process termed haemostasis. Thereby they rapidly adhere to the subendothelial matrix and recruit further platelets, resulting in platelet aggregates. Apart from their central role in haemostasis, they also kept some of their features inherited by their evolutionary ancestor-the haemocyte, which was also involved in immune defences. Together with leukocytes, platelets fight pathogenic invaders and guide many immune processes. In addition, they rely on several signalling pathways which are also relevant to immune cells. Among these, one of the central signalling hubs is the PI3K pathway. Signalling processes in platelets are unique as they lack a nucleus and therefore transcriptional regulation is absent. As a result, PI3K subclasses fulfil distinct roles in platelets compared to other cells. In contrast to leukocytes, the central PI3K subclass in platelet signalling is PI3K class Iß, which underlines the uniqueness of this cell type and opens new ways for potential platelet-specific pharmacologic inhibition. An overview of platelet function and signalling with emphasis on PI3K subclasses and their respective inhibitors is given in this chapter.


Asunto(s)
Plaquetas , Trombosis , Plaquetas/metabolismo , Plaquetas/patología , Hemostasis/fisiología , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas/metabolismo , Trombosis/metabolismo , Trombosis/patología
13.
J Hepatol ; 77(6): 1619-1630, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985549

RESUMEN

BACKGROUND & AIMS: Surgical resection of the cancerous tissue represents one of the few curative treatment options for neoplastic liver disease. Such partial hepatectomy (PHx) induces hepatocyte hyperplasia, which restores liver function. PHx is associated with bacterial translocation, leading to an immediate immune response involving neutrophils and macrophages, which are indispensable for the priming phase of liver regeneration. Additionally, PHx induces longer-lasting intrahepatic apoptosis. Herein, we investigated the effect of apoptotic extracellular vesicles (aEVs) on neutrophil function and their role in this later phase of liver regeneration. METHODS: A total of 124 patients undergoing PHx were included in this study. Blood levels of the apoptosis marker caspase-cleaved cytokeratin-18 (M30) and circulating aEVs were analyzed preoperatively and on the first and fifth postoperative days. Additionally, the in vitro effects of aEVs on the secretome, phenotype and functions of neutrophils were investigated. RESULTS: Circulating aEVs increased at the first postoperative day and were associated with higher concentrations of M30, which was only observed in patients with complete liver recovery. Efferocytosis of aEVs by neutrophils induced an activated phenotype (CD11bhighCD16highCD66bhighCD62Llow); however, classical inflammatory responses such as NETosis, respiratory burst, degranulation, or secretion of pro-inflammatory cytokines were not observed. Instead, efferocytosing neutrophils released various growth factors including fibroblast growth factor-2 and hepatocyte growth factor (HGF). Accordingly, we observed an increase of HGF-positive neutrophils after PHx and a correlation of plasma HGF with M30 levels. CONCLUSIONS: These data suggest that the clearance of PHx-induced aEVs leads to a population of non-inflammatory but regenerative neutrophils, which may support human liver regeneration. LAY SUMMARY: In this study, we show that the surgical removal of a diseased part of the liver triggers a specific type of programmed cell death in the residual liver tissue. This results in the release of vesicles from dying cells into the blood, where they are cleared by circulating immune cells. These respond by secreting hepatocyte growth factors that could potentially support the regeneration of the liver remnant.


Asunto(s)
Vesículas Extracelulares , Hiperplasia Nodular Focal , Humanos , Hepatectomía , Neutrófilos , Transporte Biológico , Regeneración Hepática
14.
Curr Atheroscler Rep ; 24(6): 483-492, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35404040

RESUMEN

PURPOSE OF THE REVIEW: In this review, we summarize current insights into the versatile roles of endothelial cells in atherogenesis. RECENT FINDINGS: The vascular endothelium represents the first barrier that prevents the entry of lipoproteins and leukocytes into the vessel wall, thereby controlling two key events in the pathogenesis of atherosclerosis. Disturbance of endothelial homeostasis increases vascular permeability, inflammation, and cellular trans-differentiation, which not only promotes the build-up of atherosclerotic plaques but is also involved in life-threatening thromboembolic complications such as plaque rupture and erosion. In this review, we focus on recent findings on endothelial lipoprotein transport, inflammation, cellular transitions, and barrier function. By using cutting-edge technologies such as single-cell sequencing, epigenetics, and cell fate mapping, novel regulatory mechanisms and endothelial cell phenotypes have been discovered, which have not only challenged established concepts of endothelial activation, but have also led to a different view of the disease.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Aterosclerosis/etiología , Células Endoteliales , Endotelio Vascular , Humanos , Inflamación/complicaciones , Placa Aterosclerótica/complicaciones
15.
Cells ; 11(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269472

RESUMEN

According to genome-wide RNA sequencing data from human and mouse platelets, adipose triglyceride lipase (ATGL), the main lipase catalyzing triglyceride (TG) hydrolysis in cytosolic lipid droplets (LD) at neutral pH, is expressed in platelets. Currently, it is elusive to whether common lipolytic enzymes are involved in the degradation of TG in platelets. Since the consequences of ATGL deficiency in platelets are unknown, we used whole-body and platelet-specific (plat)Atgl-deficient (-/-) mice to investigate the loss of ATGL on platelet function. Our results showed that platelets accumulate only a few LD due to lack of ATGL. Stimulation with platelet-activating agonists resulted in comparable platelet activation in Atgl-/-, platAtgl-/-, and wild-type mice. Measurement of mitochondrial respiration revealed a decreased oxygen consumption rate in platelets from Atgl-/- but not from platAtgl-/- mice. Of note, global loss of ATGL was associated with an anti-thrombogenic phenotype, which was evident by reduced thrombus formation in collagen-coated channels in vitro despite unchanged bleeding and occlusion times in vivo. We conclude that genetic deletion of ATGL affects collagen-induced thrombosis without pathological bleeding and platelet activation.


Asunto(s)
Aciltransferasas/metabolismo , Lipasa , Trombosis , Animales , Lipasa/metabolismo , Ratones , Ratones Noqueados , Activación Plaquetaria , Triglicéridos/metabolismo
16.
Hepatology ; 75(5): 1095-1109, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34927748

RESUMEN

BACKGROUND AND AIMS: Lipopolysaccharide (LPS) clearance is delayed in cholestatic liver diseases. While compromised clearance by Kupffer cells (KCs) is involved, the role of LPS uptake into hepatocytes and canalicular excretion remains unclear. APPROACH AND RESULTS: Wild-type (WT) and bile salt export pump (Bsep) knockout (KO) mice were challenged i.p. with LPS. Liver injury was assessed by serum biochemistry, histology, molecular inflammation markers, and immune cell infiltration. LPS concentrations were determined in liver tissue and bile. Subcellular kinetics of fluorescently labeled LPS was visualized by intravital two-photon microscopy, and the findings in Bsep KO mice were compared to common bile duct-ligated (BDL) and multidrug resistance protein 2 (Mdr2) KO mice. Changes in gut microbiota composition were evaluated by 16S ribosomal RNA gene amplicon sequencing analysis. Bsep KO mice developed more pronounced LPS-induced liver injury and inflammatory signaling, with subsequently enhanced production of proinflammatory cytokines and aggravated hepatic immune cell infiltration. After LPS administration, its concentrations were higher in liver but lower in bile of Bsep KO compared to WT mice. Intravital imaging of LPS showed a delayed clearance from sinusoidal blood with a basolateral uptake block into hepatocytes and reduced canalicular secretion. Moreover, LPS uptake into KCs was reduced. Similar findings with respect to hepatic LPS clearance were obtained in BDL and Mdr2 KO mice. Pretreatment with the microtubule inhibitor colchicine inhibited biliary excretion of LPS in WT mice, indicating that LPS clearance is microtubule-dependent. Microbiota analysis showed no change of the gut microbiome between WT and Bsep KO mice at baseline but major changes upon LPS challenge in WT mice. CONCLUSIONS: Absence of Bsep and cholestasis in general impair LPS clearance by a basolateral uptake block into hepatocytes and consequently less secretion into canaliculi. Impaired LPS removal aggravates hepatic inflammation in cholestasis.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Colestasis , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Colestasis/patología , Endotoxinas , Inflamación/metabolismo , Cinética , Lipopolisacáridos/metabolismo , Hígado/patología , Ratones , Ratones Noqueados
17.
Front Physiol ; 12: 678362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149456

RESUMEN

For decades, platelets have been known for their central role in hemostasis and their ability to release bioactive molecules, allowing inter-platelet communication and crosstalk with the immune system and vascular cells. However, with the detection of microRNAs in platelets and platelet-derived microvesicles (MVs), a new level of inter-cellular regulation was revealed. By shedding MVs from their plasma membrane, platelets are able to release functional microRNA complexes that are protected from plasma RNases. Upon contact with macrophages, endothelial cells and smooth muscle cells platelet microRNAs are rapidly internalized and fine-tune the functionality of the recipient cell by post-transcriptional reprogramming. Moreover, microRNA transfer by platelet MVs allows infiltration into tissues with limited cellular access such as solid tumors, thereby they not only modulate tumor progression but also provide a potential route for drug delivery. Understanding the precise mechanisms of horizontal transfer of platelet microRNAs under physiological and pathological conditions allows to design side-specific therapeutic (micro)RNA delivery systems. This review summarizes the current knowledge and the scientific evidence of horizontal microRNA transfer by platelets and platelet-derived MVs into vascular and non-vascular cells and its physiological consequences.

18.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803718

RESUMEN

Platelets are tightly connected with the liver, as both their production and their clearance are mediated by the liver. Platelets, in return, participate in a variety of liver diseases, ranging from non-alcoholic fatty liver diseases, (viral) hepatitis, liver fibrosis and hepatocellular carcinoma to liver regeneration. Due to their versatile functions, which include (1) regulation of hemostasis, (2) fine-tuning of immune responses and (3) release of growth factors and cellular mediators, platelets quickly adapt to environmental changes and modulate disease development, leading to different layers of complexity. Depending on the (patho)physiological context, platelets exert both beneficial and detrimental functions. Understanding the precise mechanisms through which platelet function is regulated at different stages of liver diseases and how platelets interact with various resident and non-resident liver cells helps to draw a clear picture of platelet-related therapeutic interventions. Therefore, this review summarizes the current knowledge on platelets in acute and chronic liver diseases and aims to shed light on how the smallest cells in the circulatory system account for changes in the (patho)physiology of the second largest organ in the human body.


Asunto(s)
Plaquetas/patología , Hepatopatías/patología , Humanos , Hígado/patología , Regeneración Hepática
19.
Front Physiol ; 12: 613515, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732161

RESUMEN

Platelets are involved in a variety of diseases, making their adequate functional assessment is essential. However, due to their easily activatable nature this has some methodological pitfalls. Therefore, the availability of stable, easily measurable surrogate markers would be beneficial. In this regard, some evidence suggests that certain microRNAs (miRNAs) circulating in plasma might be useful. We aimed to corroborate their suitability by analyzing plasma samples obtained in a randomized controlled trial, which assessed the effects of periodontal treatment on platelet function. We hypothesized that miRNA levels mirror changes of platelet activation and -function. Both platelet function and miRNA abundance were quantified using state-of-the-art flow cytometry and qPCR methods. The following miRNAs were quantified: 223-3p, 150-5p, 197-3p, 23a-3p, 126-3p, 24-3p, 21-5p, 27b-3p, 33a-5p, 320a, 191-5p, 28-3p, 451a, 29b-3p, and 1-3p. However, periodontal treatment did not affect the abundance of any investigated miRNAs to a relevant extent. Platelet activation and reactivity indices did neither correlate with any tested miRNA at baseline, nor after the treatment period. In addition, there was no evidence that investigated miRNAs were released by platelets, as suggested previously. In conclusion, our data suggest that in patients suffering from periodontal disease the investigated miRNAs are unlikely to be suitable biomarkers for platelet function. Our data aim to raise awareness that previously determined platelet activation dependent circulating miRNAs are not suitable as platelet biomarkers in all cohorts.

20.
Cells ; 10(2)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572939

RESUMEN

Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.


Asunto(s)
Aterosclerosis/inmunología , Linfocitos B/inmunología , Animales , Presentación de Antígeno/inmunología , Citocinas/metabolismo , Humanos , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...