Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 241: 114046, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38908044

RESUMEN

The present work explores the specificity of supramolecular assemblies comprising dialkylaminostyrylhetarene dye molecules incorporated into phosphatidylcholine (PC) or phosphatidylserine (PS) aggregates. In PS-based assemblies, the dyes demonstrate a concentration-dependent fluorescent response, distinguishing anionic proteins such as bovine serum albumin (BSA) and pepsin from lysozyme (LYZ) in aqueous solutions. Conversely, no significant response is observed when the dyes are incorporated into the well-organized bilayers of neutral PC. The fluorescent response arises from the binding of dyes to proteins, leading to the detachment of dye molecules from the assemblies, rather than from the binding of proteins to the assemblies, although the latter process is facilitated by electrostatic attraction. Thus, both the poor ordering of PS molecules and the interfacial arrangement of the dyes are prerequisites for the fluorescent response of dye-PS aggregates. The structure of the dyes significantly impacts the spectral features of dye-PS and dye-protein assemblies. An optimal dye structure has been identified for the recognition of BSA, with a limit of detection (LOD) of 10.8 nM.

2.
Dalton Trans ; 53(19): 8417-8428, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38683378

RESUMEN

To date, researchers in chase of economic cost-efficiency are faced with the problem of developing effective catalysts for water splitting without the use of platinoids. Herein, catalytic properties of hexanuclear rhenium cluster complexes are investigated in application to the hydrogen evolution reaction (HER). A paste composite electrode containing the cluster complexes was obtained, producing a current density of 10 mA cm-2 at an extraordinarily low overpotential of 90 mV (RHE). The {Re6Se8}-based complexes have shown very favorable reaction kinetics via 102 mV dec-1 value of the Tafel slope for HER reaction within the composition of the paste electrode. Model calculations of kinetic parameters using density functional theory also support the experimental findings. This work underscores the perspectivity of rhenium cluster compounds in HER and opens a promising avenue toward the practical implementation of hydrogen production through electrochemical water splitting.

3.
Int J Biol Macromol ; 266(Pt 2): 131338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569987

RESUMEN

Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 µM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.


Asunto(s)
Manganeso , Albúmina Sérica Bovina , Agua , Albúmina Sérica Bovina/química , Manganeso/química , Agua/química , Animales , Protones , Bovinos , Reactivos de Enlaces Cruzados/química , Nanopartículas/química , Hemólisis/efectos de los fármacos , Desnaturalización Proteica/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Humanos
4.
Histochem Cell Biol ; 161(6): 507-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597938

RESUMEN

The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.


Asunto(s)
Endocitosis , Lisosomas , Neuronas Motoras , Dióxido de Silicio , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Lisosomas/metabolismo , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/citología , Células HeLa , Células Cultivadas , Nanopartículas de Magnetita/química , Animales , Nanopartículas Magnéticas de Óxido de Hierro/química
5.
Inorg Chem ; 62(48): 19474-19487, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37983813

RESUMEN

Gold(I) complexes of LAu2Cl2 composition based on P2N2 ligands, namely 1,5-diaza-3,7-diphosphacyclooctanes, containing ethylpyridyl substituents at the phosphorus atoms and sp2- or sp3-hybridized endocyclic nitrogen atoms were synthesized. The SCXRD analysis indicated the strong impact of the geometry of the nitrogen atom on the structure and conformational flexibility of the complexes. The N-aryl substituted ligand with the planar endocyclic nitrogen atom provides higher flexibility of the complex and an ability to bind the solvent molecules in the "host-guest" mode, whereas that kind of behavior is forbidden for the complex with an N-alkyl substituted ligand with a pyramidal nitrogen atom. The substituents at nitrogen atoms also control the origin of the emission, which is phosphorescence for the N-aryl substituted complex and fluorescence for the N-alkylaryl substituted complex. The phosphorescent gold(I) complex displays high cytotoxicity without selectivity toward the m-HeLa and normal cells, but the core-shell nanoparticles formed on the base of the complex demonstrate reduced cytotoxicity. The luminescence of the NPs allows tracking the complexes in the cell samples.

6.
Discov Nano ; 18(1): 133, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903946

RESUMEN

The work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic P2N2-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of P2N2-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence. The cytotoxic effects of the NPs toward the normal and some of cancer cells are significantly lower than those of the corresponding molecular complexes, which correlates with the chemical stability of the NPs in the solutions. The ability of the NPs to self-enhanced and H2O2-induced ROS generation is demonstrated in solutions and intracellular space by means of the standard electron spin resonance (ESR) and fluorescence techniques correspondingly. The anticancer specificity of the NPs toward HuTu 80 cancer cells and the apoptotic cell death pathway correlate with the intracellular level of ROS, which agrees well with the self-enhancing ROS generation of the NPs. The enhanced level of ROS revealed in HuTu 80 cells incubated with the NPs can be associated with the significant level of their mitochondrial localization.

7.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37259349

RESUMEN

Magnetic nanoparticles (MNPs) have recently begun to be actively used in biomedicine applications, for example, for targeted drug delivery, in tissue engineering, and in magnetic resonance imaging. The study of the magnetic field effect on MNPs internalized into living cells is of particular importance since it allows a non-invasive influence on cellular activity. There is data stating the possibility to manipulate and control individual MNPs utilizing the local magnetic field gradient created by electromagnetic needles (EN). The present work aimed to demonstrate the methodological and technical approach for manipulating the local magnetic field gradient, generated by EN, novel luminescent MNPs internalized in HeLa cancer cells. The controlling of the magnetic field intensity and estimation of the attractive force of EN was demonstrated. Both designs of EN and their main characteristics are also described. Depending on the distance and applied voltage, the attractive force ENs ranged from 0.056 ± 0.002 to 37.85 ± 3.40 pN. As a practical application of the presented, the evaluation of viscous properties of the HeLa cell's cytoplasm, based on the measurement of the movement rate of MNPs inside cells under impact of a known magnetic force, was carried out; the viscosity was 1.45 ± 0.04 Pa·s.

8.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36770399

RESUMEN

The present work demonstrates the optimization of the ligand structure in the series of bis(phosphine oxide) and ß-ketophosphine oxide representatives for efficient coordination of Tb3+ and Eu3+ ions with the formation of the complexes exhibiting high Tb3+- and Eu3+-centered luminescence. The analysis of the stoichiometry and structure of the lanthanide complexes obtained using the XRD method reveals the great impact of the bridging group nature between two phosphine oxide moieties on the coordination mode of the ligands with Tb3+ and Eu3+ ions. The bridging imido-group facilitates the deprotonation of the imido- bis(phosphine oxide) ligand followed by the formation of tris-complexes. The spectral and PXRD analysis of the separated colloids indicates that the high stability of the tris-complexes provides their safe conversion into polystyrenesulfonate-stabilized colloids using the solvent exchange method. The red Eu3+-centered luminescence of the tris-complex exhibits the same specificity in the solutions and the colloids. The pronounced luminescent response on the antibiotic ceftriaxone allows for sensing the latter in aqueous solutions with an LOD value equal to 0.974 µM.

9.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36772015

RESUMEN

This work presents the synthesis of a new representative of hemicurcuminoids with a nonyloxy substituent (HCur) as a fluorescent amphiphilic structural element of vesicular aggregates based on phosphatidylcholine (PC), phosphatidylserine (PS), and 10,12-pentacosadiynoic acid (PCDA). Both X-ray diffraction analysis of the single crystal and 1H NMR spectra of HCur in organic solvents indicate the predominance of the enol-tautomer of HCur. DFT calculations show the predominance of the enol tautomer HCur in supramolecular assemblies with PC, PS, and PCDA molecules. The results of the molecular modeling show that HCur molecules are surrounded by PC and PS with a rather weak exposure to water molecules, while an exposure of HCur molecules to water is enhanced under its supramolecular assembly with PCDA molecules. This is in good agreement with the higher loading of HCur into PC(PS) vesicles compared to PCDA vesicles converted into polydiacetylene (PDA) ones by photopolymerization. HCur molecules incorporated into HCur-PDA vesicles exhibit greater planarity distortion and hydration effect in comparison with HCur-PC(PS) ones. HCur-PDA is presented as a dual fluorescence-chromatic nanosensor responsive to a change in pH within 7.5-9.5, heavy metal ions and polylysine, and the concentration-dependent fluorescent response is more sensitive than the chromatic one. Thus, the fluorescent response of HCur-PDA allows for the distinguishing between Cd2+ and Pb2+ ions in the concentration range 0-0.01 mM, while the chromatic response allows for the selective sensing of Pb2+ over Cd2+ ions at their concentrations above 0.03 mM.

10.
Nanomedicine ; 49: 102665, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822334

RESUMEN

The silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)]n-,) and luminescent ([Ru(dipy)3]2+) complexes are represented. The specific distribution of [Mn(HL)]n- within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)]n- in solutions. The leaching of [Mn(HL)]n- from the shell can be minimized through the co-doping of [Ru(dipy)3]2+ into the core of the SNs. The co-doped SNs exhibit colloid stability in aqueous solutions, including those modeling a blood serum. The surface of the co-doped SNs was also decorated by amino- and carboxy-groups. The cytotoxicity, hemoagglutination and hemolytic activities of the co-doped SNs are on the levels convenient for "in vivo" studies, although the amino-decorated SNs cause more noticeable agglutination and suppression of cell viability. The co-doped SNs being intravenously injected into mice allows to reveal their biodistribution in both ex vivo and in vivo conditions through confocal microscopy and magnetic resonance imaging correspondingly.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Ratones , Distribución Tisular , Medios de Contraste , Imagen por Resonancia Magnética/métodos
11.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614210

RESUMEN

The present work describes an efficient reaction of electrochemical phosphorylation of phenylacetylene controlled by the composition of catalytic nanoparticles based on non-noble-metals. The sought-after products are produced via the simple synthetic protocol based on room temperature, atom-economical reactions, and silica nanoparticles (SNs) loaded by one or two d-metal ions as nanocatalysts. The redox and catalytic properties of SNs can be tuned with a range of parameters, such as compositions of the bimetallic systems, their preparation method, and morphology. Monometallic SNs give phosphorylated acetylene with retention of the triple bond, and bimetallic SNs give a bis-phosphorylation product. This is the first example of acetylene and phosphine oxide C-H/P-H coupling with a regenerable and recyclable catalyst.


Asunto(s)
Nanopartículas , Óxidos , Metales/química , Alquinos
12.
Molecules ; 27(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296384

RESUMEN

The present work introduces the series of thiacalix[4]arenes (H4L) bearing different upper-rim substituents (R = H, Br, NO2) for rational design of ligands providing an antenna-effect on the NIR Yb3+-centered luminescence of their Yb3+ complexes. The unusual inclusive self-assembly of H3L- (Br) through Brπ interactions is revealed through single-crystal XRD analysis. Thermodynamically favorable formation of dimeric complexes [2Yb3+:2HL3-] leads to efficient sensitizing of the Yb3+ luminescence for H4L (Br, NO2), while poor sensitizing is observed for ligand H4L (H). X-ray analysis of the single crystal separated from the basified DMF solutions of YbCl3 and H4L(NO2) has revealed the transformation of the dimeric complexes into [4Yb3+:2L4-] ones with a cubane-like cluster structure. The luminescence characteristics of the complexes in the solutions reveal the peculiar antenna effect of H4L(R = NO2), where the triplet level at 567 nm (17,637 cm-1) arisen from ILCT provides efficient sensitizing of the Yb3+ luminescence.

13.
Nanomaterials (Basel) ; 12(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36145017

RESUMEN

The present work introduces a simple, electrostatically driven approach to engineered nanomaterial built from the highly cytotoxic [Au2L2]2+ complex (Au2, L = 1,5-bis(p-tolyl)-3,7-bis(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane (PNNP) ligand) and the pH-sensitive red-emitting [{Re6Q8}(OH)6]4- (Re6-Q, Q = S2- or Se2-) cluster units. The protonation/deprotonation of the Re6-Q unit is a prerequisite for the pH-triggered assembly of Au2 and Re6-Q into Au2Re6-Q colloids, exhibiting disassembly in acidic (pH = 4.5) conditions modeling a lysosomal environment. The counter-ion effect of polyethylenimine causes the release of Re6-Q units from the colloids, while the binding with lysozyme restricts their protonation in acidified conditions. The enhanced luminescence response of Re6-S on the disassembly of Au2Re6-S colloids in the lysosomal environment allows us to determine their high lysosomal localization extent through the colocalization assay, while the low luminescence of Re6-Se units in the same conditions allows us to reveal the rapture of the lysosomal membrane through the use of the Acridine Orange assay. The lysosomal pathway of the colloids, followed by their endo/lysosomal escape, correlates with their cytotoxicity being on the same level as that of Au2 complexes, but the contribution of the apoptotic pathway differentiates the cytotoxic effect of the colloids from that of the Au2 complex arisen from the necrotic processes.

14.
Pharmaceutics ; 14(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35890403

RESUMEN

The present work introduces rational design of nanoparticulate Mn(II)-based contrast agents through both variation of the µ3 (inner) ligands within a series of hexarhenium cluster complexes [{Re6(µ3-Q)8}(CN)6]4- (Re6Q8, Q = S2-, Se2- or Te2-) and interfacial decoration of the nanoparticles (NPs) K4-2xMnxRe6Q8 (x = 1.3 - 1.8) by a series of pluronics (F-68, P-123, F-127). The results highlight an impact of the ligand and pluronic for the optimal colloid behavior of the NPs allowing high colloid stability in ambient conditions and efficient phase separation under the centrifugation. It has been revealed that the K4-2xMnxRe6Se8 NPs and those decorated by F-127 are optimal from the viewpoint of magnetic relaxivities r1 and r2 (8.9 and 10.9 mM-1s-1, respectively, at 0.47 T) and low hemoagglutination activity. The insignificant leaching of Mn2+ ions from the NPs correlates with their insignificant effect on the cell viability of both M-HeLa and Chang Liver cell lines. The T1- and T2-weighted contrast ability of F-127-K4-2xMnxRe6Q8 NPs was demonstrated through the measurements of phantoms at whole body 1.5 T scanner.

15.
Colloids Surf B Biointerfaces ; 217: 112664, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35780611

RESUMEN

The present work introduces self-assembled polystyrenesulfonate (PSS) molecules as soft nanocapsules for incorporation of Eu3+-Sm3+ complexes by the solvent exchange procedure. The high levels of Eu3+- and Sm3+-luminescence of the complexes derives from the ligand-to-metal energy transfer, in turn, resulted from the complex formation of Eu3+and Sm3+ ions with the three recently synthesized cyclophanic 1,3-diketones. The structural features of the ligands are optimized for the high thermal sensitivity of Eu3+- luminescence in DMF solutions. The PSS-nanocapsules (∼100 nm) provide both colloid and chemical stabilization of the ultrasmall (3-5 nm) nanoprecipitates of the complexes, although their luminescence spectra patterns and excited state lifetimes differ from the values measured for the complexes in DMF solutions. The specific concentration ratio of the Eu3+-Sm3+ complexes in the DMF solutions allows to tune the intensity ratio of the luminescence bands at 612 and 650 nm in the heterometallic Eu3+-Sm3+ colloids. The thermal sensitivity of the Eu3+- and Sm3+-luminescence of the complexes derives from the static quenching both in PSS-colloids and in DMF solutions, while the thermo-induced dynamic quenching of the luminescence is significant only in DMF solutions. The reversibility of thermo-induced luminescence changes of the Eu3+-Sm3+ colloids is demonstrated by six heating-cooling cycles. The DLS measurements before and after the six cycles reveal the invariance of the PSS-based capsule as the prerequisite for the recyclability of the temperature monitoring through the ratio of Eu3+-to- Sm3+ luminescence.


Asunto(s)
Luminiscencia , Nanocápsulas , Europio/química , Iones , Ligandos
16.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34835844

RESUMEN

The report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL]+ chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is carried out through the solvent-exchange synthetic technique. The coordinative binding between Tb3+ centers and CD surface groups in initial DMF solutions both facilitates joint incorporation of [TbL]+ complexes and the CDs into the PSS-based nanobeads and affects fluorescence properties of [TbL]+ complexes and CDs, as well as their ability for temperature sensing. The variation of the synthetic conditions is represented herein as a tool for tuning the fluorescent response of the blue and green-emitting blocks upon heating and cooling. The revealed regularities enable developing either dual-band luminescent colloids for monitoring temperature changes within 25-50 °C through double color emission or transforming the colloids into ratiometric temperature sensors via simple concentration variation of [TbL]+ and CDs in the initial DMF solution. Novel hybrid carbon dots-terbium chelate PSS-based nanoplatform opens an avenue for a new generation of sensitive and customizable single excited dual-band nanothermometers.

17.
Mater Sci Eng C Mater Biol Appl ; 128: 112355, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474903

RESUMEN

Electrostatically driven self-assembly of [Au2L2]2+ (L is cyclic PNNP ligand) with [{Mo6I8}(L')6]2- (L' = I-, CH3COO-) in aqueous solutions is introduced as facile route for combination of therapeutic and cellular contrasting functions within heterometallic colloids (Mo6-Au2). The nature of L' affects the size and aggregation behavior of crystalline Mo6-Au2 aggregates, which in turn affect the luminescence of the cluster units incorporated into Mo6-Au2 colloids. The spin trap facilitated electron spin resonance spectroscopy technique indicates that the level of ROS generated by Mo6-Au2 colloids is also affected by their size. Both (L' = I-, CH3COO-) Mo6-Au2 colloids undergo cell internalization, which is enhanced by their assembly with poly-DL-lysine (PL) for L' = CH3COO-, but remains unchanged for L' = I-. The colloids PL-Mo6-Au2 (L' = CH3COO-) are visualized as huge crystalline aggregates both outside and inside the cell cytoplasm by confocal microscopy imaging of the incubated cells, while the smaller sized (30-50 nm) PL-Mo6-Au2 (L' = I-) efficiently stain the cell nuclei. Quantitative colocalization analysis of PL-Mo6-Au2 (L' = CH3COO-) in lysosomal compartments points to the fast endo-lysosomal escape of the colloids followed by their intracellular aggregation. The cytotoxicity of PL-Mo6-Au2 differs from that of Mo6 and Au2 blocks, predominantly acting through apoptotic pathway. The photodynamic therapeutic effect of the PL-Mo6-Au2 colloids on the cancer cells correlates with their intracellular trafficking and aggregation.


Asunto(s)
Fotoquimioterapia , Coloides , Luminiscencia , Polímeros , Agua
18.
J Colloid Interface Sci ; 594: 759-769, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33789187

RESUMEN

The surface deposition of luminescent anionic cluster complex [{Re6S8}(OH)6]4- advantages to the design and synthesis of composite luminescent silica nanoparticles (SNs) for intracellular imaging and sensing, while the encapsulation of the cluster units into SNs lacks for efficient luminescence. The deposition of the Re6 clusters resulted from their assembly at the silica surface functionalized by amino-groups provides the synthetic route for the composite SNs with bright cluster-centered luminescence invariable in pH range from 4.0 to 12.0. The pH-dependent supramolecular assembly of the cluster units with polyethyleneimine (PEI) at the silica surface is an alternative route for the synthesis of the composite SNs with high cluster-centered luminescence sensitive to pH-changes within 4.0-6.0. The sensitivity derives from the pH-driven conformational changes of PEI chains resulting in the release of the clusters from the PEI-based confinement under the acidification within pH 6.0-4.0. The potential of the composite SNs in cellular contrasting has been also revealed by the cell viability and flow cytometry measurements. It has been found that the PEI-supported embedding of the cluster units facilitates cell internalization of the composite SNs as well as results in specific intracellular distribution manifested by efficient staining of the cell nuclei in the confocal images.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Núcleo Celular , Concentración de Iones de Hidrógeno , Polietileneimina , Coloración y Etiquetado
19.
Molecules ; 26(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668373

RESUMEN

The present review is aimed at highlighting outlooks for cyclophanic 1,3-diketones as a new type of versatile ligands and building blocks of the nanomaterial for sensing and bioimaging. Thus, the main synthetic routes for achieving the structural diversity of cyclophanic 1,3-diketones are discussed. The structural diversity is demonstrated by variation of both cyclophanic backbones (calix[4]arene, calix[4]resorcinarene and thiacalix[4]arene) and embedding of different substituents onto lower or upper macrocyclic rims. The structural features of the cyclophanic 1,3-diketones are correlated with their ability to form lanthanide complexes exhibiting both lanthanide-centered luminescence and magnetic relaxivity parameters convenient for contrast effect in magnetic resonance imaging (MRI). The revealed structure-property relationships and the applicability of facile one-pot transformation of the complexes to hydrophilic nanoparticles demonstrates the advantages of 1,3-diketone calix[4]arene ligands and their complexes in developing of nanomaterials for sensing and bioimaging.


Asunto(s)
Calixarenos/química , Complejos de Coordinación/química , Cetonas/química , Nanopartículas/química , Fenoles/química , Calixarenos/síntesis química , Complejos de Coordinación/síntesis química , Cetonas/síntesis química , Ligandos , Estructura Molecular , Tamaño de la Partícula , Fenoles/síntesis química , Propiedades de Superficie
20.
Sci Rep ; 10(1): 20541, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239623

RESUMEN

The work introduces hydrophilic PSS-[Tb2(TCAn)2] nanoparticles to be applied as highly sensitive intracellular temperature nanosensors. The nanoparticles are synthesized by solvent-induced nanoprecipitation of [Tb2(TCAn)2] complexes (TCAn - thiacalix[4]arenes bearing different upper-rim substituents: unsubstituted TCA1, tert-buthyl-substituted TCA2, di- and tetra-brominated TCA3 and TCA4) with the use of polystyrenesulfonate (PSS) as stabilizer. The temperature responsive luminescence behavior of PSS-[Tb2(TCAn)2] within 293-333 K range in water is modulated by reversible changes derived from the back energy transfer from metal to ligand (M* → T1) correlating with the energy gap between the triplet levels of ligands and resonant 5D4 level of Tb3+ ion. The lowering of the triplet level (T1) energies going from TCA1 and TCA2 to their brominated counterparts TCA3 and TCA4 facilitates the back energy transfer. The highest ever reported temperature sensitivity for intracellular temperature nanosensors is obtained for PSS-[Tb2(TCA4)2] (SI = 5.25% K-1), while PSS-[Tb2(TCA3)2] is characterized by a moderate one (SI = 2.96% K-1). The insignificant release of toxic Tb3+ ions from PSS-[Tb2(TCAn)2] within heating/cooling cycle and the low cytotoxicity of the colloids point to their applicability in intracellular temperature monitoring. The cell internalization of PSS-[Tb2(TCAn)2] (n = 3, 4) marks the cell cytoplasm by green Tb3+-luminescence, which exhibits detectable quenching when the cell samples are heated from 303 to 313 K. The colloids hold unprecedented potential for in vivo intracellular monitoring of temperature changes induced by hyperthermia or pathological processes in narrow range of physiological temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...