Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 11: 853, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582038

RESUMEN

The interaction between Aspergillus flavus and Zea mays is complex, and the identification of plant genes and pathways conferring resistance to the fungus has been challenging. Therefore, the authors undertook a systems biology approach involving dual RNA-seq to determine the simultaneous response from the host and the pathogen. What was dramatically highlighted in the analysis is the uniformity in the development patterns of gene expression of the host and the pathogen during infection. This led to the development of a "stage of infection index" that was subsequently used to categorize the samples before down-stream system biology analysis. Additionally, we were able to ascertain that key maize genes in pathways such as the jasmonate, ethylene and ROS pathways, were up-regulated in the study. The stage of infection index used for the transcriptomic analysis revealed that A. flavus produces a relatively limited number of transcripts during the early stages (0 to 12 h) of infection. At later stages, in A. flavus, transcripts and pathways involved in endosomal transport, aflatoxin production, and carbohydrate metabolism were up-regulated. Multiple WRKY genes targeting the activation of the resistance pathways (i.e., jasmonate, phenylpropanoid, and ethylene) were detected using causal inference analysis. This analysis also revealed, for the first time, the activation of Z. mays resistance genes influencing the expression of specific A. flavus genes. Our results show that A. flavus seems to be reacting to a hostile environment resulting from the activation of resistance pathways in Z. mays. This study revealed the dynamic nature of the interaction between the two organisms.

2.
Artículo en Inglés | MEDLINE | ID: mdl-30471349

RESUMEN

A novel third channel catfish growth hormone secretagogue (ghrelin) receptor, GHS-R3a, gene was characterized. Identification and analysis of the genomic organization of channel catfish GHS-R3a revealed differences in exon/intron structure relative to the previously published GHS-R1a and GHS-R2a sequences. Amino acid sequence alignment of catfish GHS-R3a with -R1a and -R2a revealed 48 and 52% sequence identity, respectively. Phylogenetic analysis predicted a new clade of GHS-R3a receptors found only in fish, with representation in the teleost infradivisions Osteoglossomorpha, Clupeomorpha, and Euteleostei. In functional analyses, homologous catfish ghrelin increased intracellular Ca2+ concentration in human embryonic kidney (HEK) 293 cells stably expressing catfish GHS-R3a. On the contrary, intracellular Ca2+ concentration was unaffected by treatment with the synthetic growth hormone secretagogues GHRP-6 and hexarelin. Realtime PCR results indicated high expression of GHS-R3a in the brain and gonads, demonstrating tissue specificity among the catfish GHS-Rs. The effects of fasting and refeeding on all three ghrelin receptors were evaluated in catfish brain, pituitary, stomach, and Brockmann bodies. Most notably, GHS-R3a was the only receptor observed to significantly increase (2.9-6.3-fold) in brain, pituitary, and stomach within 4 days of fasting (P < .05). Stomach GHS-R1a also increased (P < .05) after 4 days; however, GHS-R2a was only elevated in brain and pituitary after refeeding for 1 week. Expression of all three ghrelin receptors were elevated (P < .05) in the Brockmann bodies after 2 weeks of fasting and returned to prefasting levels following refeeding. Together with the previously published characterization of GHS-R1a and -R2a, these results establish three ghrelin receptors, each altered by energy state, in channel catfish and add to the growing body of information on GHS-R evolution and function.


Asunto(s)
Proteínas de Peces/metabolismo , Ictaluridae/metabolismo , Receptores de Ghrelina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario/genética , Relación Dosis-Respuesta a Droga , Ayuno , Células HEK293 , Homeostasis , Humanos , Ligandos , Oligopéptidos/administración & dosificación , Oligopéptidos/farmacología , ARN Mensajero/genética , Receptores de Ghrelina/antagonistas & inhibidores , Receptores de Ghrelina/genética , Homología de Secuencia de Aminoácido
3.
Dev Comp Immunol ; 92: 116-128, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30447233

RESUMEN

In this study, we used the channel catfish model clonal TS32.15 alloantigen-specific cytotoxic T cell (CTL) line to examine the dynamics of memory CTL expansion and senescence in teleosts. Although TS32.15 has been routinely cultured to study catfish CTL responses and killing mechanisms, little is known about the dynamics of the CTLs in these cultures. Here we show that this cell line consists of small non-cytotoxic T cells and larger granular effector T cells and that their ratios vary with time after stimulation. Small CTLs, when exposed to their irradiated targets, replicate and differentiate to morphologically distinct cytotoxic effectors, which do not replicate. After lysing target cells, or with prolonged absence of stimulation, the effector cells transition to a non-cytolytic senescent stage or become apoptotic. In addition, we demonstrate that natural IgM in catfish serum binds lipids, including PIP2, on early apoptotic CTLs, and that these IgM+ CTL can be cleared by catfish head kidney-derived macrophages.


Asunto(s)
Apoptosis , Ictaluridae/inmunología , Memoria Inmunológica , Linfocitos T/inmunología , Animales , Diferenciación Celular , Citotoxicidad Inmunológica , Inmunoglobulina M/metabolismo , Metabolismo de los Lípidos , Activación de Linfocitos
4.
Front Genet ; 9: 104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666630

RESUMEN

Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein-protein interactions (PPI) and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI) database. Additionally, 149 plant cell wall degrading enzymes (PCWDE) were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom) generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

5.
Front Plant Sci ; 8: 1758, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29089952

RESUMEN

Aspergillus flavus is an opportunistic plant pathogen that colonizes and produces the toxic and carcinogenic secondary metabolites, aflatoxins, in oil-rich crops such as maize (Zea mays ssp. mays L.). Pathogenesis-related (PR) proteins serve as an important defense mechanism against invading pathogens by conferring systemic acquired resistance in plants. Among these, production of the PR maize seed protein, ZmPRms (AC205274.3_FG001), has been speculated to be involved in resistance to infection by A. flavus and other pathogens. To better understand the relative contribution of ZmPRms to A. flavus resistance and aflatoxin production, a seed-specific RNA interference (RNAi)-based gene silencing approach was used to develop transgenic maize lines expressing hairpin RNAs to target ZmPRms. Downregulation of ZmPRms in transgenic kernels resulted in a ∼250-350% increase in A. flavus infection accompanied by a ∼4.5-7.5-fold higher accumulation of aflatoxins than control plants. Gene co-expression network analysis of RNA-seq data during the A. flavus-maize interaction identified ZmPRms as a network hub possibly responsible for regulating several downstream candidate genes associated with disease resistance and other biochemical functions. Expression analysis of these candidate genes in the ZmPRms-RNAi lines demonstrated downregulation (vs. control) of a majority of these ZmPRms-regulated genes during A. flavus infection. These results are consistent with a key role of ZmPRms in resistance to A. flavus infection and aflatoxin accumulation in maize kernels.

6.
BMC Genomics ; 18(1): 688, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28870170

RESUMEN

BACKGROUND: Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is a seed-borne fungus causing Phomopsis seed decay in soybean. This disease is one of the most devastating diseases reducing soybean seed quality worldwide. To facilitate investigation of the genomic basis of pathogenicity and to understand the mechanism of the disease development, the genome of an isolate, MSPL10-6, from Mississippi, USA was sequenced, de novo assembled, and analyzed. RESULTS: The genome of MSPL 10-6 was estimated to be approximately 62 Mb in size with an overall G + C content of 48.6%. Of 16,597 predicted genes, 9866 genes (59.45%) had significant matches to genes in the NCBI nr database, while 18.01% of them did not link to any gene ontology classification, and 9.64% of genes did not significantly match any known genes. Analysis of the 1221 putative genes that encoded carbohydrate-activated enzymes (CAZys) indicated that 715 genes belong to three classes of CAZy that have a direct role in degrading plant cell walls. A novel fungal ulvan lyase (PL24; EC 4.2.2.-) was identified. Approximately 12.7% of the P. longicolla genome consists of repetitive elements. A total of 510 potentially horizontally transferred genes were identified. They appeared to originate from 22 other fungi, 26 eubacteria and 5 archaebacteria. CONCLUSIONS: The genome of the P. longicolla isolate MSPL10-6 represented the first reported genome sequence in the fungal Diaporthe-Phomopsis complex causing soybean diseases. The genome contained a number of Pfams not described previously. Information obtained from this study enhances our knowledge about this seed-borne pathogen and will facilitate further research on the genomic basis and pathogenicity mechanism of P. longicolla and aids in development of improved strategies for efficient management of Phomopsis seed decay in soybean.


Asunto(s)
Ascomicetos/genética , Ascomicetos/fisiología , Genómica , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Semillas/microbiología , Pared Celular/enzimología , Transferencia de Gen Horizontal , Anotación de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos/genética , Transposasas/genética
7.
Front Genet ; 7: 206, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917194

RESUMEN

A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus.

8.
Front Genet ; 6: 201, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26089837

RESUMEN

Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM) is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs) that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA