Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Pharm Nanotechnol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38757164

RESUMEN

The rise in global cancer burden, notably breast cancer, emphasizes the need to address chemotherapy-induced cognitive impairment, also known as chemobrain. Although chemotherapy drugs are effective against cancer, they can trigger cognitive deficits. This has triggered the exploration of preventive strategies and novel therapeutic approaches. Nanomedicine is evolving as a promising tool to be used for the mitigation of chemobrain by overcoming the blood-brain barrier (BBB) with innovative drug delivery systems. Polymer and lipid-based nanoparticles enable targeted drug release, enhancing therapeutic effectiveness. Utilizing the intranasal route of administration may facilitate drug delivery to the central nervous system (CNS) by circumventing first-pass metabolism. Therefore, knowledge of nasal anatomy is critical for optimizing drug delivery via various pathways. Despite challenges, nanoformulations exhibit the potential in enhancing brain drug delivery. Continuous research into formulation techniques and chemobrain mechanisms is vital for developing effective treatments. The intranasal administration of nanoformulations holds promise for improving therapeutic outcomes in chemobrain management. This review offers insights into potential future research directions, such as exploring novel drug combinations, investigating alternative delivery routes, or integrating emerging technologies to enhance the efficacy and safety of nanoformulations for chemobrain management.

2.
Curr Pharm Des ; 30(7): 489-518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757691

RESUMEN

Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.


Asunto(s)
Sistemas de Liberación de Medicamentos , Geles , Geles/química , Humanos , Administración Tópica , Animales , Administración Cutánea , Absorción Cutánea/efectos de los fármacos
3.
Life Sci ; 346: 122629, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631667

RESUMEN

Ferroptosis is a novel type of controlled cell death resulting from an imbalance between oxidative harm and protective mechanisms, demonstrating significant potential in combating cancer. It differs from other forms of cell death, such as apoptosis and necrosis. Molecular therapeutics have hard time playing the long-acting role of ferroptosis induction due to their limited water solubility, low cell targeting capacity, and quick metabolism in vivo. To this end, small molecule inducers based on biological factors have long been used as strategy to induce cell death. Research into ferroptosis and advancements in nanotechnology have led to the discovery that nanomaterials are superior to biological medications in triggering ferroptosis. Nanomaterials derived from iron can enhance ferroptosis induction by directly releasing large quantities of iron and increasing cell ROS levels. Moreover, utilizing nanomaterials to promote programmed cell death minimizes the probability of unfavorable effects induced by mutations in cancer-associated genes such as RAS and TP53. Taken together, this review summarizes the molecular mechanisms involved in ferroptosis along with the classification of ferroptosis induction. It also emphasized the importance of cell organelles in the control of ferroptosis in cancer therapy. The nanomaterials that trigger ferroptosis are categorized and explained. Iron-based and noniron-based nanomaterials with their characterization at the molecular and cellular levels have been explored, which will be useful for inducing ferroptosis that leads to reduced tumor growth. Within this framework, we offer a synopsis, which traverses the well-established mechanism of ferroptosis and offers practical suggestions for the design and therapeutic use of nanomaterials.


Asunto(s)
Ferroptosis , Nanoestructuras , Neoplasias , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Animales , Simulación de Dinámica Molecular , Hierro/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
4.
Materials (Basel) ; 17(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38541577

RESUMEN

MXenes are two-dimensional transition metal carbides, nitrides, and carbonitrides that have become important materials in nanotechnology because of their remarkable mechanical, electrical, and thermal characteristics. This review emphasizes how crucial MXene conjugates are for several biomedical applications, especially in the field of cancer. These two-dimensional (2D) nanoconjugates with photothermal, chemotherapeutic, and photodynamic activities have demonstrated promise for highly effective and noninvasive anticancer therapy. MXene conjugates, with their distinctive optical capabilities, have been employed for bioimaging and biosensing, and their excellent light-to-heat conversion efficiency makes them perfect biocompatible and notably proficient nanoscale agents for photothermal applications. The synthesis and characterization of MXenes provide a framework for an in-depth understanding of various fabrication techniques and their importance in the customized formation of MXene conjugates. The following sections explore MXene-based conjugates for nanotheranostics and demonstrate their enormous potential for biomedical applications. Nanoconjugates, such as polymers, metals, graphene, hydrogels, biomimetics, quantum dots, and radio conjugates, exhibit unique properties that can be used for various therapeutic and diagnostic applications in the field of cancer nanotheranostics. An additional layer of understanding into the safety concerns of MXene nanoconjugates is provided by detailing their toxicity viewpoints. Furthermore, the review concludes by addressing the opportunities and challenges in the clinical translation of MXene-based nanoconjugates, emphasizing their potential in real-world medical practices.

5.
Toxicon ; 239: 107611, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38211805

RESUMEN

Melittin is honey bee venom's primary and most toxic pharmacologically active component. Melittin causes haemolysis, lymphocyte lysis, long-term pain, localised inflammation followed by rhabdomyolysis, and severe renal failure. Renal failure or cardiovascular complications could lead to the victim's death. Severe honey bee bites are treated with general medication involving antihistaminic, anti-inflammatory, and analgesic drugs, as a specific treatment option is unavailable. An earlier study showed the anti-hemolysis and anti-lymphocyte lysis activity of mini- αA-crystallin (MAC), a peptide derived from human eye lens alpha-crystallin. MAC's use has often been restricted despite its high therapeutic potential due to its poor skin permeability. This study compared the skin permeation, anti-inflammatory and analgesic activities of natural peptide MAC and its modified version (MAC-GRD) formed by attaching cell-penetrating peptide (CPP) and GRD amino residues into MAC. Gel formulations were prepared for MAC and MAC-GRD peptides using carbopol (1% w/w), Tween 80 (1%), and ethanol (10%). An ex-vivo skin permeation study was performed using a vertical-type Franz diffusion apparatus. Preclinical in-vivo experiments were conducted to compare the native and modified peptide formulations against melittin-induced toxicity in Wistar rats. MAC gel, MAC-GRD gel and 1% hydrocortisone cream significantly reduced the melittin-induced writhing (20.16 ± 0.792) response in rats with 15.16 ± 0.47, 11.16 ± 0.477 and 12.66 ± 0.66 wriths, respectively. There was a significant reduction in melittin-induced inflammation when MAC-GRD gel was applied immediately after melittin administration. At 0.5, 1, 3, and 5 h, the MAC-GRD-treated rat paws were 0.9 ± 0.043 mm, 0.750 ± 0.037 mm, 0.167 ± 0.0070 mm, and 0.133 ± 0.031 mm thick. Administration of melittin resulted in reduced GSH (antioxidant) levels (47.33 ± 0.760 µg/mg). However, treatment with MAC-GRD gel (71.167 ± 0.601 µg/mg), MAC gel (65.167 ± 1.138 µg/mg), and 1% hydrocortisone (68.33 ± 0.667 µg/mg) significantly increased the antioxidant enzyme levels. MAC-GRD gel significantly reduced the elevated MDA levels (6.933 ± 0.049 nmol/mg) compared to the melittin group (12.533 ± 0.126 nmol/mg), followed by the 1% hydrocortisone (7.367 ± 0.049 nmol/mg) and MAC gel (7.917 ± 0.048 nmol/mg). MAC-GRD demonstrated more skin permeability and superior anti-inflammatory, analgesic, and antioxidant activities when compared to MAC gel. When compared to standard 1% hydrocortisone cream, MAC-GRD had better anti-inflammatory, analgesic, antioxidant, and comparable action in anti-oxidant restoration against melittin. These findings suggest that the developed MAC-GRD gel formulation could help to treat severe cases of honey bee stings.


Asunto(s)
Cristalinas , Mordeduras y Picaduras de Insectos , Insuficiencia Renal , Ratas , Abejas , Humanos , Animales , Meliteno/farmacología , Hidrocortisona , Antioxidantes , Ratas Wistar , Péptidos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Analgésicos , Inflamación
6.
Nanomedicine (Lond) ; 19(1): 59-77, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197375

RESUMEN

Sentinel lymph node (SLN) detection and biopsy is a critical staging component for several cancers. Apart from established methods using dyes or radiolabeled colloids, newer techniques are emerging, like near-infrared fluorescent compounds, targeted molecular radiopharmaceuticals and magnetic nano-tracers. In the overview section of this review, we categorize SLN detection tracers based on their principle of use. We discuss the merits of existing tracers and provide a glimpse of in-development formulations. A subsequent clinical section explores the expanded role of SLN detection in management of various cancers, citing current medical guidelines and the leading conclusions of long-term clinical trials. The concluding section tries to provide a perspective of promising developments and the work required to bring them to clinical fruition.


Asunto(s)
Ganglio Linfático Centinela , Humanos , Ganglio Linfático Centinela/diagnóstico por imagen , Biopsia del Ganglio Linfático Centinela/métodos , Metástasis Linfática , Radiofármacos , Colorantes , Ganglios Linfáticos/diagnóstico por imagen
7.
Int J Pharm ; 648: 123582, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37940082

RESUMEN

Letrozole (LTZ) loaded dendrimeric nano-liposomes were prepared for targeted delivery to breast cancer cells. Surface modification with cationic peptide dendrimers (PDs) and a cancer specific ligand, transferrin (Tf), was attempted. Arginine-terminated PD (D-1) and Arginine-terminated, lipidated PD (D-2) were synthesized using Solid Phase Peptide Synthesis, purified by preparative HPLC and characterized using 1HNMR, MS and DSC analyses. Surface modification of drug loaded liposomes with Tf and/or PD was carried out. Formulations were characterized using FTIR, DSC, 1HNMR, XRD and TEM. Tf-conjugated LTZ liposomes (LTf) and Tf/D-2-conjugated LTZ liposomes (LTfD-2) showed greater cytotoxic potential (IC50 = 95.03 µg/mL and 23.75 µg/mL respectively) with enhanced cellular uptake in MCF7 cells compared to plain LTZ. Blocking studies of Tf (Tf-receptor mediated internalization) revealed decreased uptake of LTf and LTfD-2 confirming the role of Tf in uptake of Tf-conjugated liposomes. Intravenous treatment with LTfD-2 caused highest reduction in tumor volumes of female BALB/c-nude mice (145 mm3) compared to plain LTZ (605 mm3) and unconjugated LTZ liposomes (LP) (300 mm3). In vivo biodistribution studies revealed higher fluorescence in tumor tissue and liver of LTfD-2 treated mice than LTf or LP treatment. Immunohistochemical studies revealed greater apoptotic potential of LTfD-2 as indicated by TUNEL assay and ROS detection assay. The study reveals the superior therapeutic efficacy of the developed LTZ liposomal nanocarriers using PDs to enhance the transfection efficiency in addition to modifying the surface characteristics by attaching a targeting ligand for active drug targeting to breast cancer cells.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Femenino , Ratones , Animales , Letrozol , Ratones Desnudos , Distribución Tisular , Ligandos , Transferrina , Péptidos , Arginina , Línea Celular Tumoral
8.
Life Sci ; 334: 122226, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918627

RESUMEN

AIMS: Development and characterization of LAM and DTG loaded liposomes conjugated anti-CD4 antibody and peptide dendrimer (PD2) to improve the therapeutic efficacy and to achieve targeted treatment for HIV infection. MAIN METHODS: A 2-level full factorial design was used to optimize the preparation of dual drug loaded liposomes. Optimized dual drug loaded ligand conjugated liposomes were assessed for their cytotoxicity and cell internalization on TZM-bl cells. Anti-HIV efficiency of the dual drug loaded liposomes were screened for their inhibitory potential in TZM-bl cells and the activities were confirmed using Peripheral Blood Mononuclear Cells (PBMCs). KEY FINDINGS: The particle size of the optimized dual drug-loaded liposomes was 133.7 ± 4.04 nm, and the spherical morphology of the liposomes was confirmed by TEM analysis. The entrapment efficiency was 34 ± 4.9 % and 54 ± 1.8 % for LAM and DTG, respectively, and a slower in vitro release of LAM and DTG was observed when entrapped into liposomes. The cytotoxicity of the dual drug loaded liposomes was similar to the cytotoxicity of free drug solutions. Conjugation of anti-CD4 antibody and PD2 did not significantly influence the cytotoxicity but it enhanced the uptake of liposomes into the cells. Conjugated dual drug loaded liposomes exhibited better HIV inhibition with lower IC50 values (0.0003 ± 0.0002 µg/mL) compared to their free drug solutions (0.002 ± 0.001 µg/mL). The liposomal formulations have shown similar activities in both screening and confirmatory cell-based assays. SIGNIFICANCE: The results demonstrated the cell targeting ability of dual drug loaded liposomes conjugated with anti-CD4 antibody and peptide dendrimer. Conjugated liposomes also improved anti-HIV efficiency of LAM and DTG.


Asunto(s)
Dendrímeros , Infecciones por VIH , Humanos , Liposomas/química , Infecciones por VIH/tratamiento farmacológico , Composición de Medicamentos , Leucocitos Mononucleares , Péptidos
9.
Pharmaceutics ; 15(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004573

RESUMEN

The therapeutic effectiveness of the most widely used anticancer drug 5-fluorouracil (5-FU) is constrained by its high metabolism, short half-life, and rapid drug resistance after chemotherapy. Although various nanodrug delivery systems have been reported for skin cancer therapy, their retention, penetration and targeting are still a matter of concern. Hence, in the current study, a topical gel formulation that contains a metal-organic framework (zeolitic imidazole framework; ZIF-8) loaded with 5-FU and a surface modified with sonidegib (SDG; acting as a therapeutic agent as well as a targeting ligand) (5-FU@ZIF-8 MOFs) is developed against DMBA-UV-induced BCC skin cancer in rats. The MOFs were prepared using one-pot synthesis followed by post drug loading and SDG conjugation. The optimized MOFs were incorporated into hyaluronic acid-hydroxypropyl methyl cellulose gel and further subjected to characterization. Enhanced skin deposition of the 5-FU@ZIF-8-SDG MOFs was observed using ex vivo skin permeation studies. Confocal laser microscopy studies showed that 5-FU@ZIF-8-SDG MOFs permeated the skin via the transfollicular pathway. The 5-FU@ZIF-8-SDG MOFs showed stronger cell growth inhibition in A431 cells and good biocompatibility with HaCaT cells. Histopathological studies showed that the efficacy of the optimized MOF gels improved as the epithelial cells manifested modest hyperplasia, nuclear pleomorphism, and dyskeratosis. Additionally, immunohistochemistry and protein expression studies demonstrated the improved effectiveness of the 5-FU@ZIF-8-SDG MOFs, which displayed a considerable reduction in the expression of Bcl-2 protein. Overall, the developed MOF gels showed good potential for the targeted delivery of multifunctional MOFs in topical formulations for treating BCC cancer.

10.
Heliyon ; 9(10): e20406, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37810864

RESUMEN

Peptic ulcer disease (PUD) is one of the most prevalent gastro intestinal disorder which often leads to painful sores in the stomach lining and intestinal bleeding. Untreated Helicobacter pylori (H. pylori) infection is one of the major reasons for chronic PUD which, if left untreated, may also result in gastric cancer. Treatment of H. pylori is always a challenge to the treating doctor because of the poor bioavailability of the drug at the inner layers of gastric mucosa where the bacteria resides. This results in ineffective therapy and antibiotic resistance. Current treatment regimens available for gastric ulcer and H. pylori infection uses a combination of multiple antimicrobial agents, proton pump inhibitors (PPIs), H2-receptor antagonists, dual therapy, triple therapy, quadruple therapy and sequential therapy. This polypharmacy approach leads to patient noncompliance during long term therapy. Management of H. pylori induced gastric ulcer is a burning issue that necessitates alternative treatment options. Novel formulation strategies such as extended-release gastro retentive drug delivery systems (GRDDS) and nanoformulations have the potential to overcome the current bioavailability challenges. This review discusses the current status of H. pylori treatment, their limitations and the formulation strategies to overcome these shortcomings. Authors propose here an innovative strategy to improve the H. pylori eradication efficiency.

11.
Int J Biol Macromol ; 253(Pt 3): 126882, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37717871

RESUMEN

An interpenetrating polymer network (IPN) of areca cellulose and guar gum grafted with poly (N, N'-dimethylacrylamide) was made by microwave irradiation technique. N, N-methylenebisacrylamide (MBA) was used as the crosslinking agent. The network polymer was characterised using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Powder X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The chemical interaction between the drug and the polymer was studied using Differential Scanning Calorimetry (DSC). The swelling of the gel was measured under different pH conditions and the swelling parameters were evaluated. The gel was loaded with an anti-diabetic drug, Metformin Hydrochloride, and the in vitro drug release was studied in gastric and intestinal conditions. The results indicated complete release of the drug in 6 h under pH 1.2 and in 10 h under pH 7.4. The kinetic analysis of release data indicated the drug release to follow Higuchi's model. The release exponent "n" of Korsmeyer-Peppas model was found to be >0.45 indicating the drug diffusion to be a non-Fickian process.


Asunto(s)
Metformina , Polímeros , Celulosa , Preparaciones de Acción Retardada/química , Cinética , Hidrogeles/química , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno , Rastreo Diferencial de Calorimetría
12.
Pharmaceutics ; 15(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37765146

RESUMEN

5-Fluorouracil (5-FU), a BCS class III drug, has low oral bioavailability and is cytotoxic in nature causing severe systemic side effects when administered through the intravenous route. Topical drug delivery could potentially mitigate the systemic side-effects. Microemulsions (MEs) would be an apt solution due to enhanced partitioning of the drug to the skin. However, conventional methods for preparing MEs are inefficient since they are not continuous and are very tedious and time-consuming processes hence revealing the need for the development of continuous manufacturing technology. In our study, 5-FU MEs were prepared using a continuous manufacturing Twin Screw Process (TSP) and its efficiency in the treatment of skin cancer was evaluated. Water-in-oil MEs were prepared using isopropyl myristate as the oil phase and Aerosol OT and Tween 80 as the surfactants. The average particle size was observed to be 178 nm. Transmission electron microscopy was employed to confirm the size and shape of the MEs. FTIR study proved no physical or chemical interaction between the excipients and the drug. In vitro drug release using vertical diffusion cells and ex vivo skin permeation studies showed that the drug was released sustainably and permeated across the skin, respectively. In in vitro cytotoxicity studies, 5-FU MEs were accessed in HaCat and A431 cell lines to determine percentage cell viability and IC50. Skin irritation and histopathological examination implied that the 5-FU MEs did not cause any significant irritation to the skin. In vivo pharmacodynamics studies in rats suggested that the optimised formulation was effective in treating squamous cell carcinoma (SCC). Therefore, 5-FU MEs efficiently overcame the various drawbacks faced during oral and intravenous drug delivery. Also, TSP proved to be a technique that overcomes the various problems associated with the conventional methods of preparing MEs.

13.
Sci Total Environ ; 904: 166665, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37652369

RESUMEN

BACKGROUND: Retinal melatonin is crucial for neuroprotection. Exposure to light-emitting diodes (LEDs) affects retinal neurons, possibly influencing retinal melatonin levels. Hence, we aimed to quantify the retinal melatonin level with different LED wavelengths. METHOD: A total of 24 Sprague Dawley (SD) male rats were divided into four groups (n = 6 in each group) as normal controls (NC), blue light (BL), white light (WL), and yellow light (YL). The rats in the experimental groups were exposed to different wavelengths of LEDs for 28 days (12:12 h light-dark cycle) with uniform illumination of 450-500 lx. Following exposure, the rats were subjected to behavioral tests such as passive avoidance and elevated plus maze tests. Following the behavior tests, the rats were sacrificed, eyes were enucleated, and retinal tissue was stored at -80 °C. The homogenized retina was used for reactive oxygen species (ROS) and melatonin quantification using an enzyme-linked immunosorbent assay (ELISA) kit. RESULTS: Passive avoidance test revealed a significant difference across the groups (p < 0.0004). The BL exposure group demonstrated increased latency to enter the dark compartment (DC) and impaired motor memory. The elevated plus maze test revealed a significant difference across all the groups (p < 0.012), where the time spent in the closed arm was greater in the BL exposure group. Comparison of ROS levels revealed a significant difference across the groups (p < 0.0001), with increased nitric oxide concentrations in the experimental groups. Melatonin levels were significantly decreased in the light exposure groups (p < 0.0001) compared to the NC group. CONCLUSION: Cumulative exposure to different LED wavelengths resulted in increased anxiety with impaired motor activity. This was also complemented by the addition of oxidative stress leading to decreased melatonin levels in the retina, which might trigger retinal neuronal damage.


Asunto(s)
Melatonina , Masculino , Ratas , Animales , Roedores , Especies Reactivas de Oxígeno , Ratas Sprague-Dawley , Retina/fisiología , Luz , Ritmo Circadiano
14.
J Chromatogr Sci ; 61(9): 827-837, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37554069

RESUMEN

Stability indicating a reverse-phase HPLC analytical method for the quantification of tamoxifen citrate (TMX) in the bulk and lipidic nano-vesicles (LNVs) was developed. The optimized method was validated according to the ICH Q2 (R1) guidelines by following a three-factor interaction Box-Behnken design using Design-Expert® software. The responses measured at 236 nm were retention time (Rt), peak area, tailing factor (TF) and the number of theoretical plates. TMX was eluted best using the Luna® C18 LC Column along with a mobile phase of methanol (MeOH) and ammonium acetate buffer (AAB pH 4.5) 80:20 v/v mixture at 25 ± 2°C temperature. The currently developed method was linear in 100-5,000 ng/mL range with a detection limit of 4.55 ng/mL and a quantification limit of 13.78 ng/mL. The optimized method was utilized to evaluate the stability of TMX in different stress conditions by performing forced degradation studies. The results from the degradation study stipulated that on exposure to various stressors namely acid, alkali, oxidative, thermal and UV light, the TMX did not show considerable degradation except for UV light exposure. Further, the method was successfully used for the quantification of TMX in LNVs.


Asunto(s)
Tamoxifeno , Cromatografía Líquida de Alta Presión/métodos , Estabilidad de Medicamentos
15.
Anal Chim Acta ; 1273: 341530, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423663

RESUMEN

BACKGROUND: The thermally coupled energy states that contribute to the upconversion luminescence of rare earth element-doped nanoparticles have been the subject of intense research due to their potential nanoscale temperature probing. However, the inherent low quantum efficiency of these particles often limits their practical applications, and currently, surface passivation and incorporation of plasmonic particles are being explored to improve the inherent quantum efficiency of the particle. However, the role of these surface passivating layers and the attached plasmonic particles in the temperature sensitivity of upconverting nanoparticles while probing the intercellular temperature has not been investigated thus far, particularly at the single nanoparticle level. RESULTS: The analysis of the study on the thermal sensitivity of oleate-free UCNP, UCNP@SiO2, and UCNP@SiO2@Au particles is carried out at a single particle level in a physiologically relevant temperature range (299 K-319 K) by optically trapping the particle. The thermal relative sensitivity of the as-prepared upconversion nanoparticle (UCNP) is found to be greater than that of UCNP@SiO2 and UCNP@SiO2@Au particles in an aqueous medium. An optically trapped single luminescence particle inside the cell is used to monitor the temperature inside the cell by measuring the luminescence from the thermally coupled states. The absolute sensitivity of optically trapped particles inside the biological cell increases with temperature, with a greater impact on the bare UCNP, which exhibits higher values for thermal sensitivity than UCNP@SiO2 and UCNP@SiO2@Au. The thermal sensitivity of the trapped particle inside the biological cell at 317 K indicates the thermal sensitivity of UCNP > UCNP@SiO2@Au > UCNP@SiO2 particles. SIGNIFICANCE AND NOVELTY: Compared to bulk sample-based temperature probing, the present study demonstrates temperature measurement at the single particle level by optically trapping the particle and further explores the role of the passivating silica shell and the incorporation of plasmonic particles on thermal sensitivity. Furthermore, thermal sensitivity measurements inside a biological cell at the single particle level are investigated and illustrated that thermal sensitivity at a single particle is sensitive to the measuring environment.

16.
Chemosphere ; 336: 139215, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37336444

RESUMEN

Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d post-treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim based herbicide exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-based herbicide treated mice, the expression of Erß and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-based herbicide treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.


Asunto(s)
Herbicidas , Embarazo , Animales , Femenino , Ratones , Masculino , Herbicidas/toxicidad , Herbicidas/metabolismo , Proteómica , Semen , Testículo/metabolismo , Espermatozoides/metabolismo , Desarrollo Embrionario
17.
Int J Pharm ; 637: 122868, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36958606

RESUMEN

Follicle stimulating hormone (FSH) is widely used for the treatment of female infertility, where the level of FSH is suboptimal due to which arrest in follicular development and anovulation takes place. Currently, only parenteral formulations are available for FSH in the market. Due to the drawbacks of parenteral administration and the high market shares of FSH, there is a need for easily accessible oral formulation. Therefore, enteric coated capsules filled with FSH loaded nanostructured lipid carriers (NLCs) or liposomes were prepared. Preliminary studies such as circular dichroism, SDS-PAGE, FTIR and ELISA were conducted to analyze FSH. Prepared formulations were optimized with respect to the size, polydispersity index, zeta potential, and entrapment efficiency using the design of experiments. Optimized formulations were subjected to particle counts and distribution analysis, TEM analysis, in vitro drug release, dissolution of enteric coated capsules, cell line studies, everted sac rat's intestinal uptake study, pharmacokinetics, pharmacodynamics, and stability studies. In the case of liposomes, RGD conjugation was done by carbodiimide chemistry and conjugation was confirmed by FTIR, 1HNMR and Raman spectroscopy. The prepared formulations were discrete and spherical. The release of FSH from enteric coated capsules was slow and sustained. The increased permeability of nano-formulations was observed in Caco-2 monoculture as well as in Caco-2 and Raji-B co-culture models. NLCs and liposomes showed an improvement in oral bioavailability and efficacy of FSH in rats. This may be due to mainly chylomicron-assisted lymphatic uptake of NLCs; whereas, in the case of liposomes, RGD-based targeting of ß1 integrins of M cells on Peyer's patches may be the main reason for the better effect by FSH. FSH was found to be stable chemically and conformationally. Overall, the study reveals the successful development and evaluation of FSH loaded NLCs and liposomes.


Asunto(s)
Portadores de Fármacos , Nanoestructuras , Humanos , Ratas , Femenino , Animales , Portadores de Fármacos/química , Liposomas , Hormona Folículo Estimulante , Células CACO-2 , Nanoestructuras/química , Administración Oral , Cápsulas , Oligopéptidos , Tamaño de la Partícula
18.
Membranes (Basel) ; 13(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36837696

RESUMEN

A key diterpene lactone of Andrographis paniculata, i.e., andrographolide (AG), exhibits a variety of physiological properties, including hepatoprotection. The limited solubility, short half-life, and poor bioavailability limits the pharmacotherapeutic potential of AG. Therefore, in this study we aimed to formulate and optimize AG-loaded nanoliposomes (AGL) using the Design of Experiment (DOE) approach and further modify the surface of the liposomes with mannosylated chitosan to enhance its oral bioavailability. Physical, morphological, and solid-state characterization was performed to confirm the formation of AGL and Mannosylated chitosan-coated AGL (MCS-AGL). Molecular docking studies were conducted to understand the ligand (MCS) protein (1EGG) type of interaction. Further, in vitro release, ex vivo drug permeation, and in vivo pharmacokinetics studies were conducted. The morphological studies confirmed that AGL was spherical and a layer of MCS coating was observed on their surface, forming the MCS-AGL. Further increase in the particle size and change in the zeta potential of MCS-AGL confirms the coating on the surface of AGL (375.3 nm, 29.80 mV). The in vitro drug release data reflected a sustained drug release profile from MCS-AGL in the phosphate buffer (pH 7.4) with 89.9 ± 2.13% drug release in 8 h. Ex vivo permeation studies showed higher permeation of AG from MCS-AGL (1.78-fold) compared to plain AG and AGL (1.37-fold), indicating improved permeability profiles of MCS-AGL. In vivo pharmacokinetic studies inferred that MCS-AGL had a 1.56-fold enhancement in AUC values compared to plain AG, confirming that MCS-AGL improved the bioavailability of AG. Additionally, the 2.25-fold enhancement in the MRT proves that MCS coating also enhances the in vivo stability and retention of AG (stealth effect). MCS as a polymer therefore has a considerable potential for improving the intestinal permeability and bioavailability of poorly soluble and permeable drugs or phytoconstituents when coated over nanocarriers.

19.
Pharm Dev Technol ; 28(2): 176-189, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36688412

RESUMEN

The current study aimed to investigate drug carrier miscibility in pharmaceutical solid dispersions (SD) and include the effervescent system, i.e. Effervescence-induced amorphous solid dispersions (ESD), to enhance the solubility of a poorly water-soluble Glibenclamide (GLB). Kollidon VA 64, PEG-3350, and Gelucire-50/13 were selected as the water-soluble carriers. The miscibility of the drug-carrier was predicted by molecular dynamics simulation, Hansen solubility parameters, Flory-Huggins theory, and Gibb's free energy. Solid dispersions were prepared by microwave, solvent evaporation, lyophilization, and Hot Melt Extrusion (HME) methods. The prepared solid dispersions were subjected to solubility, in-vitro dissolution, and other characterization studies. The in-silico and theoretical approach suggested that the selected polymers exhibited better miscibility with GLB. Solid-state characterizations like FTIR and 1H NMR proved the formation of intermolecular hydrogen bonding between the drug and carriers, which was comparatively higher in ESDs than SDs. DSC, PXRD, and microscopic examination of GLB and SDs confirmed the amorphization of GLB, which was higher in ESDs than SDs. Gibb's free energy concept suggested that the prepared solid dispersions will be stable at room temperature. Ex-vivo intestinal absorption study on optimized ESDs prepared with Kollidon VA64 using the HME technique exhibited a higher flux and permeability coefficient than the pure drug suggesting a better drug delivery. The drug-carrier miscibility was successfully studied in SDs of GLB. The addition of the effervescent agent further enhanced the solubility and dissolution of GLB. Additionally, this might exhibit a better bioavailability, confirmed by ex-vivo intestinal absorption study.


Asunto(s)
Polímeros , Agua , Solubilidad , Preparaciones Farmacéuticas , Composición de Medicamentos/métodos , Polímeros/química , Portadores de Fármacos/química
20.
F1000Res ; 12: 1438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38778814

RESUMEN

Background: In the current work, co-rotating twin-screw processor (TSP) was utilized to formulate solid crystal suspension (SCS) of carvedilol (CAR) for enhancing its solubility, dissolution rate, permeation and bioavailability using mannitol as a hydrophilic carrier. Methods: In-silico molecular dynamics (MD) studies were done to simulate the interaction of CAR with mannitol at different kneading zone temperatures (KZT). Based on these studies, the optimal CAR: mannitol ratios and the kneading zone temperatures for CAR solubility enhancement were assessed. The CAR-SCS was optimized utilizing Design-of-Experiments (DoE) methodology using the Box-Behnken design. Saturation solubility studies and in vitro dissolution studies were performed for all the formulations. Physicochemical characterization was performed using differential scanning calorimetry , Fourier transform infrared spectroscopy, X-ray diffraction studies, and Raman spectroscopy analysis. Ex vivo permeation studies and in vivo pharmacokinetic studies for the CAR-SCS were performed. Stability studies were performed for the DoE-optimized CAR-SCS at accelerated stability conditions at 40 ºC/ 75% RH for three months. Results: Experimentally, the formulation with CAR: mannitol ratio of 20:80, prepared using a KZT of 120 ºC at 100 rpm screw speed showed the highest solubility enhancement accounting for 50-fold compared to the plain CAR. Physicochemical characterization confirmed the crystalline state of DoE-optimized CAR-SCS. In-vitro dissolution studies indicated a 6.03-fold and 3.40-fold enhancement in the dissolution rate of optimized CAR-SCS in pH 1.2 HCl solution and phosphate buffer pH 6.8, respectively, as compared to the pure CAR. The enhanced efficacy of the optimized CAR-SCS was indicated in the ex vivo and in vivo pharmacokinetic studies wherein the apparent permeability was enhanced 1.84-fold and bioavailability enhanced 1.50-folds compared to the plain CAR. The stability studies showed good stability concerning the drug content. Conclusions: TSP technology could be utilized to enhance the solubility, bioavailability and permeation of poor soluble CAR by preparing the SCS.


Asunto(s)
Disponibilidad Biológica , Carvedilol , Solubilidad , Carvedilol/farmacocinética , Carvedilol/química , Carvedilol/administración & dosificación , Animales , Administración Oral , Carbazoles/farmacocinética , Carbazoles/química , Carbazoles/administración & dosificación , Propanolaminas/farmacocinética , Propanolaminas/química , Propanolaminas/administración & dosificación , Permeabilidad , Masculino , Manitol/química , Manitol/farmacocinética , Suspensiones , Simulación de Dinámica Molecular , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...