Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 1112793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215221

RESUMEN

Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe.

2.
Biosensors (Basel) ; 12(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35624562

RESUMEN

The ongoing SARS-CoV-2 pandemic demonstrates that the capacity of centralized clinical diagnosis laboratories represents a significant limiting factor in the global fight against the newly emerged virus. Scaling up these capacities also requires simple and robust methods for virus diagnosis to be easily driven by untrained personnel in a point-of-care (POC) environment. The use of impedance sensors reduces the complexity and costs of diagnostic instruments and increases automation of diagnosis processes. We present an impedance point-of-care system (IMP-POCS) that uses interdigitated electrodes surrounded by an integrated heating meander to monitor loop-mediated isothermal amplification (LAMP) and melt curve analysis (MCA) consecutively in a short time. MCA permits distinguishing false- from true-positive results and significantly raises the validity of pathogen detection. Conclusively, the herein-developed miniaturized total analysis system (µTAS) represents a powerful and promising tool for providing reliable, low-cost alternatives to standard clinical diagnosis.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Sistemas de Atención de Punto , SARS-CoV-2/genética , Sensibilidad y Especificidad
4.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228234

RESUMEN

Potato is an important staple food crop in both developed and developing countries. However, potato plants are susceptible to several economically important viruses that reduce yields by up to 50% and affect tuber quality. One of the major threats is corky ringspot, which is a tuber necrosis caused by tobacco rattle virus (TRV). The appearance of corky ringspot symptoms on tubers prior to commercialization results in ≈ 45% of the tubers being downgraded in quality and value, while ≈ 55% are declared unsaleable. To improve current disease management practices, we have developed simple diagnostic methods for the reliable detection of TRV without RNA purification, involving minimalized sample handling (mini), subsequent improved colorimetric loop-mediated isothermal amplification (LAMP), and final verification by lateral-flow dipstick (LFD) analysis. Having optimized the mini-LAMP-LFD approach for the sensitive and specific detection of TRV, we confirmed the reliability and robustness of this approach by the simultaneous detection of TRV and other harmful viruses in duplex LAMP reactions. Therefore, our new approach offers breeders, producers, and farmers an inexpensive and efficient new platform for disease management in potato breeding and cultivation.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Tipificación Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/virología , Tubérculos de la Planta/virología , ARN Viral/genética , Solanum tuberosum/virología , Colorimetría/instrumentación , Colorimetría/métodos , Humanos , Técnicas de Diagnóstico Molecular/instrumentación , Tipificación Molecular/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Virus de Plantas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Front Plant Sci ; 10: 1666, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998348

RESUMEN

The FLOWERING LOCUS T (FT)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic traits. We recently identified a novel FT-like gene (NtFT5) that encodes a day-neutral floral activator in the model tobacco crop Nicotiana tabacum. However, further characterization is necessary to determine its value as a target for breeding programs. We therefore investigated the function of NtFT5 by expression analysis and mutagenesis. Expression analysis revealed that NtFT5 is transcribed in phloem companion cells, as is typical for FT-like genes. However, high levels of NtFT5 mRNA accumulated not only in the leaves but also in the stem. Loss-of-function mutants (generated using CRISPR/Cas9) were unable to switch to reproductive growth under long-day conditions, indicating that NtFT5 is an indispensable major floral activator during long-days. Backcrossing was achieved by grafting the mutant scions onto wild-type rootstock, allowing the restoration of flowering and pollination by a wild-type donor. The resulting heterozygous Ntft5- /NtFT5+ plants flowered with a mean delay of only ~2 days, demonstrating that one functional allele is sufficient for near-normal reproductive timing. However, this minor extension of the vegetative growth phase also conferred beneficial agronomic traits, including a >10% increase in vegetative leaf biomass on the main shoot and the production of more seeds. The agronomic benefits of the heterozygous plants persisted under various abiotic stress conditions, confirming that NtFT5 is a promising target for crop improvement to address the effects of climate change.

6.
Mol Genet Genomics ; 290(1): 387-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25260821

RESUMEN

Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, ß-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications.


Asunto(s)
Tubérculos de la Planta/metabolismo , Inhibidores de Proteasas/farmacología , Solanum tuberosum/metabolismo , Clonación Molecular , Biblioteca de Genes , Inhibidores de la Lipooxigenasa/farmacología , Mapeo Físico de Cromosoma , Inhibidores de Proteasas/aislamiento & purificación , Proteínas Recombinantes de Fusión/aislamiento & purificación
7.
Plant J ; 72(6): 908-21, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22889438

RESUMEN

Flowering is an important agronomic trait that often depends on the integration of photoperiod, vernalization, gibberellin and/or autonomous signaling pathways by regulatory proteins such as FLOWERING LOCUS T (FT), a member of the phosphatidylethanolamine-binding protein (PEBP) family. Six PEBP family proteins control flowering in the model plant Arabidopsis thaliana, and their regulatory functions are well established, but variation in the number and structural diversity of PEBPs in different species means their precise functions must be determined on a case-by-case basis. We isolated four novel FT-like genes from Nicotiana tabacum (tobacco), and determined their expression profiles in wild-type plants and their overexpression phenotypes in transgenic plants. We found that all four genes were expressed in leaves under short-day conditions, and at least NtFT3 expression was restricted to phloem companion cells. We also found that the NtFT1, NtFT2 and NtFT3 proteins are floral inhibitors (atypical for FT-like proteins), whereas only NtFT4 is a floral inducer. We were unable to detect the expression of these genes under long-day conditions, suggesting that all four tobacco FT-like proteins may control flowering in response to short days. Phylogenetic analysis of PEBP family proteins and their functions in different solanaceous species confirmed that gene duplication and divergence within the FT-like clade has led to the evolution of antagonistic regulators that may help to fine-tune floral initiation in response to environmental cues.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Nicotiana/crecimiento & desarrollo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Secuencia de Bases , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Luz , Datos de Secuencia Molecular , Fenotipo , Floema/genética , Floema/crecimiento & desarrollo , Floema/fisiología , Floema/efectos de la radiación , Proteínas de Unión a Fosfatidiletanolamina/genética , Fotoperiodo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN , Transducción de Señal , Factores de Tiempo , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/efectos de la radiación
8.
Plant Physiol ; 151(1): 334-46, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19605551

RESUMEN

Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here, we present a comprehensive analysis of the major latex proteins from two dandelion species, Taraxacum officinale and Taraxacum kok-saghyz, and enzymatic studies showing that polyphenoloxidase (PPO) is responsible for latex browning. Electrophoretic analysis and amino-terminal sequencing of the most abundant proteins in the aqueous latex fraction revealed the presence of three PPO-related proteins generated by the proteolytic cleavage of a single precursor (pre-PPO). The laticifer-specific pre-PPO protein contains a transit peptide that can target reporter proteins into chloroplasts when constitutively expressed in dandelion protoplasts, perhaps indicating the presence of structures similar to plastids in laticifers, which lack genuine chloroplasts. Silencing the PPO gene by constitutive RNA interference in transgenic plants reduced PPO activity compared with wild-type controls, allowing T. kok-saghyz RNA interference lines to expel four to five times more latex than controls. Latex fluidity analysis in silenced plants showed a strong correlation between residual PPO activity and the coagulation rate, indicating that laticifer-specific PPO plays a major role in latex coagulation and wound sealing in dandelions. In contrast, very little PPO activity is found in the latex of the rubber tree Hevea brasiliensis, suggesting functional divergence of latex proteins during plant evolution.


Asunto(s)
Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Látex/metabolismo , Taraxacum/enzimología , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica/fisiología , Silenciador del Gen , Látex/química , Plantas Modificadas Genéticamente , Taraxacum/genética
9.
J Agric Food Chem ; 56(24): 11773-85, 2008 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19032022

RESUMEN

In grapes, stilbene synthesis occurs in the skin, and it is induced by biotic and abiotic stresses. To date, experimental evidence of a constitutive production of resveratrols in healthy grape is scarce and not conclusive. The aim of the present work was to investigate stilbene biosynthesis in healthy grapes both at biochemical and molecular levels. By measuring the concentration of resveratrols in ripe berries of 78 Vitis vinifera varieties for 3 years, we could identify significant differences among genotypes, providing the first tentative varietal classification based on resveratrol content. Furthermore, an increasing stilbene accumulation from veraison to ripening phase was also observed. Using real-time reverse transcription polymerase chain reaction and a berry-specific cDNA array, gene expression analysis was carried out on two distinct pools of berries belonging to the high and low resveratrol producers and on three berry developmental stages. The stilbene synthase, phenylalanine ammonia-lyase, and 4-coumarate-CoA ligase expression profiles showed an increasing concentration of these transcripts from véraison to maturity and a higher accumulation in the grape of high resveratrol producers. Macroarray data analysis revealed that high resveratrol levels are also accompanied by the up-regulation of genes involved in plant defense and the concomitant underexpression of genes related to the ripening process and to indole alkaloid synthesis.


Asunto(s)
Estilbenos/metabolismo , Vitis/química , Vitis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/metabolismo
10.
Plant Biotechnol J ; 6(6): 576-84, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18422889

RESUMEN

Potato can be used as a source of modified starches for culinary and industrial processes, but its allelic diversity and tetraploid genome make the identification of novel alleles a challenge, and breeding such alleles into elite lines is a slow and difficult process. An efficient and reliable strategy has been developed for the rapid introduction and identification of new alleles in elite potato breeding lines, based on the ethylmethanesulphonate mutagenesis of dihaploid seeds. Using the granule-bound starch synthase I gene (waxy) as a model, a series of point mutations that potentially affect gene expression or enzyme function was identified. The most promising loss-of-function allele (waxy(E1100)) carried a mutation in the 5'-splice donor site of intron 1 that caused mis-splicing and protein truncation. This was used to establish elite breeding lineages lacking granule-bound starch synthase I protein activity and producing high-amylopectin starch. This is the first report of rapid and efficient mutation analysis in potato, a genetically complex and vegetatively propagated crop.


Asunto(s)
Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/metabolismo , Almidón Sintasa/metabolismo , Almidón/biosíntesis , Alelos , Secuencia de Aminoácidos , Amilopectina/genética , Amilopectina/metabolismo , Secuencia de Bases , Barajamiento de ADN/métodos , Intrones/genética , Modelos Genéticos , Plantas Modificadas Genéticamente/genética , Mutación Puntual , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Solanum tuberosum/genética , Almidón Sintasa/genética
11.
Plant J ; 38(2): 285-97, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078331

RESUMEN

The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.


Asunto(s)
Genes de Plantas , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Tylenchoidea/patogenicidad , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , ADN de Plantas/genética , Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente , Polimorfismo de Longitud del Fragmento de Restricción , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...