Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420919

RESUMEN

The measurement of physiologic pressure helps diagnose and prevent associated health complications. From typical conventional methods to more complicated modalities, such as the estimation of intracranial pressures, numerous invasive and noninvasive tools that provide us with insight into daily physiology and aid in understanding pathology are within our grasp. Currently, our standards for estimating vital pressures, including continuous BP measurements, pulmonary capillary wedge pressures, and hepatic portal gradients, involve the use of invasive modalities. As an emerging field in medical technology, artificial intelligence (AI) has been incorporated into analyzing and predicting patterns of physiologic pressures. AI has been used to construct models that have clinical applicability both in hospital settings and at-home settings for ease of use for patients. Studies applying AI to each of these compartmental pressures were searched and shortlisted for thorough assessment and review. There are several AI-based innovations in noninvasive blood pressure estimation based on imaging, auscultation, oscillometry and wearable technology employing biosignals. The purpose of this review is to provide an in-depth assessment of the involved physiologies, prevailing methodologies and emerging technologies incorporating AI in clinical practice for each type of compartmental pressure measurement. We also bring to the forefront AI-based noninvasive estimation techniques for physiologic pressure based on microwave systems that have promising potential for clinical practice.


Asunto(s)
Inteligencia Artificial , Determinación de la Presión Sanguínea , Humanos , Presión Sanguínea , Determinación de la Presión Sanguínea/métodos , Oscilometría
2.
J Cardiovasc Dev Dis ; 10(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36826532

RESUMEN

Atrial fibrillation (AF) is the most persistent arrhythmia today, with its prevalence increasing exponentially with the rising age of the population. Particularly at elevated heart rates, a functional abnormality known as cardiac alternans can occur prior to the onset of lethal arrhythmias. Cardiac alternans are a beat-to-beat oscillation of electrical activity and the force of cardiac muscle contraction. Extensive evidence has demonstrated that microvolt T-wave alternans can predict ventricular fibrillation vulnerability and the risk of sudden cardiac death. The majority of our knowledge of the mechanisms of alternans stems from studies of ventricular electrophysiology, although recent studies offer promising evidence of the potential of atrial alternans in predicting the risk of AF. Exciting preclinical and clinical studies have demonstrated a link between atrial alternans and the onset of atrial tachyarrhythmias. Here, we provide a comprehensive review of the clinical utility of atrial alternans in identifying the risk and guiding treatment of AF.

3.
Aging (Albany NY) ; 8(11): 3091-3109, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27899769

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an age-related multifactorial disease featuring non-uniform lung fibrosis. The decisive cellular events at early stages of IPF are poorly understood. While the involvement of club cells in IPF pathogenesis is unclear, their migration has been associated with lung fibrosis. In this study, we labeled club cells immunohistochemically in IPF lungs using a club cell marker Claudin-10 (Cldn10), a unique protein based on the recent report which demonstrated that the appearance of Cldn10 in developing and repairing lungs precedes other club cell markers including club cell secretory protein (CCSP). Cldn10-positive cells in IPF lungs displayed marked pleomorphism and were found in varied arrangements, suggesting their phenoconversion. These results were corroborated by immunogold labeling for Cldn10. Further, immunohistochemical double-labeling for Cldn10 and α-smooth muscle actin (α-SMA) demonstrated that aberrant α-SMA signals are frequently encountered near disorganized Cldn10-positive cells in hyperplastic bronchiolar epithelium and thickened interstitium of IPF lungs. Collectively, these data indicate that club cells actively participate in the initiation and progression of IPF through phenoconversion involving the acquisition of proliferative and migratory abilities. Thus, our new findings open the possibility for club cell-targeted therapy to become a strategic option for the treatment of IPF.


Asunto(s)
Actinas/metabolismo , Células Epiteliales Alveolares/metabolismo , Movimiento Celular , Claudinas/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Células Epiteliales Alveolares/citología , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...