Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Biol ; 37(6): e14156, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728514

RESUMEN

Understanding the relative effectiveness and enabling conditions of different area-based management tools is essential for supporting efforts that achieve positive biodiversity outcomes as area-based conservation coverage increases to meet newly set international targets. We used data from a coastal social-ecological monitoring program in 6 Indo-Pacific countries to analyze whether social, ecological, and economic objectives and specific management rules (temporal closures, fishing gear-specific, species-specific restrictions) were associated with coral reef fish biomass above sustainable yield levels across different types of area-based management tools (i.e., comparing those designated as marine protected areas [MPAs] with other types of area-based management). All categories of objectives, multiple combinations of rules, and all types of area-based management had some sites that were able to sustain high levels of reef fish biomass-a key measure for coral reef functioning-compared with reference sites with no area-based management. Yet, the same management types also had sites with low biomass. As governments advance their commitments to the Kunming-Montreal Global Biodiversity Framework and the target to conserve 30% of the planet's land and oceans by 2030, we found that although different types of management can be effective, most of the managed areas in our study regions did not meet criteria for effectiveness. These findings underscore the importance of strong management and governance of managed areas and the need to measure the ecological impact of area-based management rather than counting areas because of their designation.


Efectos de las reglas y objetivos de manejo sobre los resultados de conservación marina Resumen Es esencial entender la efectividad relativa y las condiciones habilitantes de las diferentes herramientas de manejo basadas en el área para respaldar los esfuerzos que brindan resultados positivos para la biodiversidad conforme aumenta la cobertura de la conservación basada en el área para alcanzar los objetivos internacionales recién establecidos. Usamos los datos de un programa de monitoreo socioeconómico costero en seis países del Indo-Pacífico para analizar si los objetivos sociales, ecológicos y económicos y las reglas específicas de manejo (cierres temporales, restricciones de equipo de pesca, vedas de especies) se asociaban con la biomasa de los peces de arrecife de coral por encima de los niveles de producción sustentable en diferentes tipos de herramientas de manejo basadas en el área (es decir, comparar aquellas designadas como áreas marinas protegidas[AMP] con otros tipos de manejo basado en el área). Todas las categorías de objetivos, las múltiples combinaciones de reglas y todos los tipos de manejo basado en el área tuvieron algunos sitios capaces de mantener los niveles altos de biomasa de peces de arrecife-una medida importante para el funcionamiento de los arrecifes-en comparación con los sitios de referencia sin manejo basado en el área. Sin embargo, los mismos tipos de manejo también tuvieron sitios con baja biomasa. Conforme los gobiernos avanzan en sus compromisos con el Marco Global de Biodiversidad de Kunming-Montreal y hacia el objetivo de conservar el 30% del suelo y los océanos del planeta para el 2030, descubrimos que, aunque diferentes tipos de manejo pueden ser efectivos, la mayoría de las áreas manejadas en nuestras regiones de estudio no cumplieron con los criterios de efectividad. Este descubrimiento enfatiza la importancia de una gestión y un gobierno sólidos de las áreas manejadas y la necesidad de medir el impacto ecológico del manejo basado en el área en lugar de contar las áreas por su designación.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Arrecifes de Coral , Océanos y Mares , Peces
2.
Mar Policy ; 134: 104803, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34566239

RESUMEN

COVID-19 is continuing to have far-reaching impacts around the world, including on small-scale fishing communities. This study details the findings from 39 in-depth interviews with community members, community leaders, and fish traders in five communities in Kenya about their experiences since the beginning of the COVID-19 pandemic in March, 2020. The interviews were conducted by mobile phone between late August and early October 2020. In each community, people were impacted by curfews, rules about gathering, closed travel routes, and bans on certain activities. Fish trade and fisheries livelihoods were greatly disrupted. Respondents from all communities emphasized how COVID-19 had disrupted relationships between fishers, traders, and customers; changed market demand; and ultimately made fishing and fish trading livelihoods very difficult to sustain. While COVID-19 impacted different groups in the communities-i.e., fishers, female fish traders, and male fish traders-all experienced a loss of income and livelihoods, reduced cash flow, declining food security, and impacts on wellbeing. As such, although small-scale fisheries can act as a crucial safety net in times of stress, the extent of COVID-19 disruptions to alternative and informal livelihoods stemmed cash flow across communities, and meant that fishing was unable to fulfil a safety net function as it may have done during past disruptions. As the pandemic continues to unfold, ensuring that COVID-19 safe policies and protocols support continued fishing or diversification into other informal livelihoods, and that COVID-19 support reaches the most vulnerable, will be critical in safeguarding the wellbeing of families in these coastal communities.

4.
Nat Ecol Evol ; 3(9): 1341-1350, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406279

RESUMEN

Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Clima , Cambio Climático , Ecosistema , Humanos
5.
PLoS One ; 10(10): e0138769, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26469979

RESUMEN

The coral reefs of Tanga, Tanzania were recognized as a national conservation priority in the early 1970s, but the lack of a management response led to damage by dynamite, beach seines, and high numbers of fishers until the mid 1990s. Subsequently, an Irish Aid funded IUCN Eastern Africa program operated from 1994 to mid 2007 to implement increased management aimed at reducing these impacts. The main effects of this management were to establish collaborative management areas, reduce dynamite and seine net fishing, and establish small community fisheries closures beginning in 1996. The ecology of the coral reefs was studied just prior to the initiation of this management in 1996, during, 2004, and a few years after the project ended in 2010. The perceptions of resource users towards management options were evaluated in 2010. The ecological studies indicated that the biomass of fish rose continuously during this period from 260 to 770 kg/ha but the small closures were no different from the non-closure areas. The benthic community studies indicate stability in the coral cover and community composition and an increase in coralline algae and topographic complexity over time. The lack of change in the coral community suggests resilience to various disturbances including fisheries management and the warm temperature anomaly of 1998. These results indicate that some aspects of the management program had been ecologically successful even after the donor program ended. Moreover, the increased compliance with seine net use and dynamite restrictions were the most likely factors causing this increase in fish biomass and not the closures. Resource users interviewed in 2010 were supportive of gear restrictions but there was considerable between-community disagreement over the value of specific restrictions. The social-ecological results suggest that increased compliance with gear restrictions is largely responsible for the improvements in reef ecology and is a high priority for future management programs.


Asunto(s)
Conservación de los Recursos Naturales/economía , Arrecifes de Coral , Fenómenos Ecológicos y Ambientales , Animales , Biomasa , Peces , Cadena Alimentaria , Herbivoria , Humanos , Percepción , Características de la Residencia
6.
PLoS One ; 9(4): e93385, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718371

RESUMEN

Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions.


Asunto(s)
Antozoos/fisiología , Filogeografía , Animales , Biodiversidad , Arrecifes de Coral , Recolección de Datos , Océano Índico , Modelos Lineales
7.
Ambio ; 43(8): 1006-19, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24375399

RESUMEN

This expert opinion study examined the current status of the intertidal zone in the Western Indian Ocean (WIO) and ranked and discussed future management approaches. Information was gathered from scientists, practitioners, and managers active in the WIO region through a questionnaire and a workshop. The experts stated that the productive intertidal environment is highly valuable for reasons such as recreation, erosion protection, and provision of edible invertebrates and fish. Several anthropogenic pressures were identified, including pollution, harbor activities, overexploitation, and climate change. The experts considered the WIO intertidal zone as generally understudied, undermanaged, and with poor or no monitoring. The most important management strategies according to the expert opinions are to develop and involve local people in integrated coastal zone management (ICZM), to increase knowledge on species-environment relationships, and to develop awareness campaigns and education programs. To improve coastal environmental management and conservation, we argue that the intertidal zone should be treated as one organizational management unit within the larger framework of ICZM.


Asunto(s)
Conservación de los Recursos Naturales , Testimonio de Experto , Cambio Climático , Comunicación , Océano Índico , Encuestas y Cuestionarios , Contaminación del Agua/efectos adversos
8.
Proc Natl Acad Sci U S A ; 108(41): 17230-3, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21949381

RESUMEN

Sustainably managing ecosystems is challenging, especially for complex systems such as coral reefs. This study develops critical reference points for sustainable management by using a large empirical dataset on the coral reefs of the western Indian Ocean to investigate associations between levels of target fish biomass (as an indicator of fishing intensity) and eight metrics of ecosystem state. These eight ecological metrics each exhibited specific thresholds along a continuum of fishable biomass ranging from heavily fished sites to old fisheries closures. Three thresholds lay above and five below a hypothesized window of fishable biomass expected to produce a maximum multispecies sustainable yield (B(MMSY)). Evaluating three management systems in nine countries, we found that unregulated fisheries often operate below the B(MMSY), whereas fisheries closures and, less frequently, gear-restricted fisheries were within or above this window. These findings provide tangible management targets for multispecies coral reef fisheries and highlight key tradeoffs required to achieve different fisheries and conservation goals.


Asunto(s)
Arrecifes de Coral , Ecosistema , Explotaciones Pesqueras/métodos , Animales , Biodiversidad , Biomasa , Conservación de los Recursos Naturales , Océano Índico , Modelos Lineales , Modelos Biológicos
9.
Conserv Biol ; 24(1): 207-16, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19906066

RESUMEN

Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Comunicación
10.
Biol Bull ; 173(3): 539-551, 1987 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29320226

RESUMEN

Corals are reputed to have low tolerance to salinity fluctuations. Yet the scleractinian coral Siderastrea siderea commonly inhabits reef zones and nearshore areas that experience salinity fluctuations of 5 to l0%. Small colonies of this species were subjected to both long-term and sudden decreases or increases in salinity. Their rates of aerobic respiration and photosynthesis, measured as changes in oxygen concentration, were followed for up to 144 hours after the sudden changes. Normal salinities of coastal waters near Panacea, Florida, are 28 to 30% but S. siderea was able to acclimate to 42% when salinity was increased slowly over a 30-day period. Neither respiratory nor photosynthetic rates of S. siderea were affected by changes in salinity of less than 10% above or below the acclimation salinity. Greater changes in salinity (either up or down) caused decreases in respiratory and photosynthetic rates proportional to the magnitude of the salinity change. Decreases in chborophyll per algal cell and in assimilation number were associated with and possibly responsible for some of the decreases in photosynthetic rates. These results show that S. siderea is able to withstand sudden and prolonged, environmentally realistic changes in salinity without measurable whole-animal effects. Further studies are needed to determine whether this species is remarkable in its ability to tolerate salinity change, or whether reef corals are more tolerant to salinity change than is generally believed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...