Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 16(7): 1275-1282, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29223136

RESUMEN

Effective weed control can protect yields of cassava (Manihot esculenta) storage roots. Farmers could benefit from using herbicide with a tolerant cultivar. We applied traditional transgenesis and gene editing to generate robust glyphosate tolerance in cassava. By comparing promoters regulating expression of transformed 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes with various paired amino acid substitutions, we found that strong constitutive expression is required to achieve glyphosate tolerance during in vitro selection and in whole cassava plants. Using strategies that exploit homologous recombination (HR) and nonhomologous end-joining (NHEJ) DNA repair pathways, we precisely introduced the best-performing allele into the cassava genome, simultaneously creating a promoter swap and dual amino acid substitutions at the endogenous EPSPS locus. Primary EPSPS-edited plants were phenotypically normal, tolerant to high doses of glyphosate, with some free of detectable T-DNA integrations. Our methods demonstrate an editing strategy for creating glyphosate tolerance in crop plants and demonstrate the potential of gene editing for further improvement of cassava.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Manihot/genética , Alelos , Genes de Plantas/genética , Ingeniería Genética , Sitios Genéticos/genética , Glicina/farmacología , Manihot/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Glifosato
2.
New Phytol ; 213(4): 1632-1641, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28116755

RESUMEN

Cassava (Manihot esculenta) feeds c. 800 million people world-wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Here, we provide molecular identities for 11 cassava tissue/organ types through RNA-sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs. The information gained from this study is of value for both conventional and biotechnological improvement programs.


Asunto(s)
Productos Agrícolas/genética , Abastecimiento de Alimentos , Perfilación de la Expresión Génica , Manihot/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Plant Physiol ; 172(2): 650-660, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27443602

RESUMEN

Plant disease symptoms exhibit complex spatial and temporal patterns that are challenging to quantify. Image-based phenotyping approaches enable multidimensional characterization of host-microbe interactions and are well suited to capture spatial and temporal data that are key to understanding disease progression. We applied image-based methods to investigate cassava bacterial blight, which is caused by the pathogen Xanthomonas axonopodis pv. manihotis (Xam). We generated Xam strains in which individual predicted type III effector (T3E) genes were mutated and applied multiple imaging approaches to investigate the role of these proteins in bacterial virulence. Specifically, we quantified bacterial populations, water-soaking disease symptoms, and pathogen spread from the site of inoculation over time for strains with mutations in avrBs2, xopX, and xopK as compared to wild-type Xam ∆avrBs2 and ∆xopX both showed reduced growth in planta and delayed spread through the vasculature system of cassava. ∆avrBs2 exhibited reduced water-soaking symptoms at the site of inoculation. In contrast, ∆xopK exhibited enhanced induction of disease symptoms at the site of inoculation but reduced spread through the vasculature. Our results highlight the importance of adopting a multipronged approach to plant disease phenotyping to more fully understand the roles of T3Es in virulence. Finally, we demonstrate that the approaches used in this study can be extended to many host-microbe systems and increase the dimensions of phenotype that can be explored.


Asunto(s)
Mediciones Luminiscentes/métodos , Enfermedades de las Plantas/microbiología , Haz Vascular de Plantas/microbiología , Plantas/microbiología , Xanthomonas/patogenicidad , Brassica/microbiología , Capsicum/microbiología , Interacciones Huésped-Patógeno , Solanum lycopersicum/microbiología , Manihot/microbiología , Mutación , Fenotipo , Hojas de la Planta/microbiología , Plantas/clasificación , Reproducibilidad de los Resultados , Análisis Espacial , Proteínas Virales/genética , Virulencia/genética , Xanthomonas/clasificación , Xanthomonas/genética
4.
G3 (Bethesda) ; 6(5): 1383-90, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-26976444

RESUMEN

The plant hormone auxin is perceived by a family of F-box proteins called the TIR1/AFBs. Phylogenetic studies reveal that these proteins fall into four clades in flowering plants called TIR1, AFB2, AFB4, and AFB6. Genetic studies indicate that members of the TIR1 and AFB2 groups act as positive regulators of auxin signaling by promoting the degradation of the Aux/IAA transcriptional repressors. In this report, we demonstrate that both AFB4 and AFB5 also function as auxin receptors based on in vitro assays. We also provide genetic evidence that AFB4 and AFB5 are targets of the picloram family of auxinic herbicides in addition to indole-3-acetic acid. In contrast to previous studies we find that null afb4 alleles do not exhibit obvious defects in seedling morphology or auxin hypersensitivity. We conclude that AFB4 and AFB5 act in a similar fashion to other members of the family but exhibit a distinct auxin specificity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Herbicidas/farmacología , Picloram/farmacología , Receptores de Superficie Celular/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Resistencia a los Herbicidas/genética , Ácidos Indolacéticos/metabolismo , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Unión Proteica , Receptores de Superficie Celular/genética , Plantones/genética , Plantones/metabolismo
5.
Front Plant Sci ; 5: 734, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25601871

RESUMEN

Plant diseases cause significant reductions in agricultural productivity worldwide. Disease symptoms have deleterious effects on the growth and development of crop plants, limiting yields and making agricultural products unfit for consumption. For many plant-pathogen systems, we lack knowledge of the physiological mechanisms that link pathogen infection and the production of disease symptoms in the host. A variety of quantitative high-throughput image-based methods for phenotyping plant growth and development are currently being developed. These methods range from detailed analysis of a single plant over time to broad assessment of the crop canopy for thousands of plants in a field and employ a wide variety of imaging technologies. Application of these methods to the study of plant disease offers the ability to study quantitatively how host physiology is altered by pathogen infection. These approaches have the potential to provide insight into the physiological mechanisms underlying disease symptom development. Furthermore, imaging techniques that detect the electromagnetic spectrum outside of visible light allow us to quantify disease symptoms that are not visible by eye, increasing the range of symptoms we can observe and potentially allowing for earlier and more thorough symptom detection. In this review, we summarize current progress in plant disease phenotyping and suggest future directions that will accelerate the development of resistant crop varieties.

6.
Plant J ; 74(5): 746-54, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23521356

RESUMEN

Auxin is a key plant growth regulator that also impacts plant-pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole-3-acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector-triggered immunity was active in YUC1-overexpressing plants, and we observed only minor effects on SA levels and SA-mediated responses. Furthermore, a plant line carrying both the YUC1-overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA-mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA-mediated defenses.


Asunto(s)
Ácidos Indolacéticos/farmacología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Ácido Salicílico/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Ácidos Indolacéticos/metabolismo , Modelos Genéticos , Mutación , Oxigenasas/genética , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente , Pseudomonas syringae/patogenicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Salicílico/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA