Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18204, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875544

RESUMEN

S. aureus is a pathogen that frequently causes severe morbidity and phage therapy is being discussed as an alternative to antibiotics for the treatment of S. aureus infections. In this in vitro and animal study, we demonstrated that the activity of anti-staphylococcal phages is severely impaired in 0.5% plasma or synovial fluid. Despite phage replication in these matrices, lysis of the bacteria was slower than phage propagation, and no reduction of the bacterial population was observed. The inhibition of the phages associated with a reduction in phage adsorption, quantified to 99% at 10% plasma. S. aureus is known to bind multiple coagulation factors, resulting in the formation of aggregates and blood clots that might protect the bacterium from the phages. Here, we show that purified fibrinogen at a sub-physiological concentration of 0.4 mg/ml is sufficient to impair phage activity. In contrast, dissolution of the clots by tissue plasminogen activator (tPA) partially restored phage activity. Consistent with these in vitro findings, phage treatment did not reduce bacterial burdens in a neutropenic mouse S. aureus thigh infection model. In summary, phage treatment of S. aureus infections inside the body may be fundamentally challenging, and more investigation is needed prior to proceeding to in-human trials.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Animales , Ratones , Staphylococcus aureus/fisiología , Activador de Tejido Plasminógeno , Líquido Sinovial , Infecciones Estafilocócicas/terapia , Infecciones Estafilocócicas/microbiología , Fagos de Staphylococcus/fisiología , Antibacterianos
2.
Antibiotics (Basel) ; 10(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34827275

RESUMEN

Alternative treatments for Escherichia coli infections are urgently needed, and phage therapy is a promising option where antibiotics fail, especially for urinary tract infections (UTI). We used wastewater-isolated phages to test their lytic activity against a panel of 47 E. coli strains reflecting the diversity of strains found in UTI, including sequence type 131, 73 and 69. The plaquing host range (PHR) was between 13 and 63%. In contrast, the kinetic host range (KHR), describing the percentage of strains for which growth in suspension was suppressed for 24 h, was between 0% and 19%, substantially lower than the PHR. To improve the phage host range and their efficacy, we bred the phages by mixing and propagating cocktails on a subset of E. coli strains. The bred phages, which we termed evolution-squared ε2-phages, of a mixture of Myoviridae have KHRs up to 23% broader compared to their ancestors. Furthermore, using constant phage concentrations, Myoviridae ε2-phages suppressed the growth of higher bacterial inocula than their ancestors did. Thus, the ε2-phages were more virulent compared to their ancestors. Analysis of the genetic sequences of the ε2-phages with the broadest host range reveals that they are mosaic intercrossings of 2-3 ancestor phages. The recombination sites are distributed over the whole length of the genome. All ε2-phages are devoid of genes conferring lysogeny, antibiotic resistance, or virulence. Overall, this study shows that ε2-phages are remarkably more suitable than the wild-type phages for phage therapy.

3.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918287

RESUMEN

Due to the rapid spread of antibiotic resistance, and the difficulties of treating biofilm-associated infections, alternative treatments for S. aureus infections are urgently needed. We tested the lytic activity of several wild type phages against a panel of 110 S. aureus strains (MRSA/MSSA) composed to reflect the prevalence of S. aureus clonal complexes in human infections. The plaquing host ranges (PHR) of the wild type phages were in the range of 51% to 60%. We also measured what we called the kinetic host range (KHR), i.e., the percentage of strains for which growth in suspension was suppressed for 24 h. The KHR of the wild type phages ranged from 2% to 49%, substantially lower than the PHRs. To improve the KHR and other key pharmaceutical properties, we bred the phages by mixing and propagating cocktails on a subset of S. aureus strains. These bred phages, which we termed evolution-squared (ε2) phages, have broader KHRs up to 64% and increased virulence compared to the ancestors. The ε2-phages with the broadest KHR have genomes intercrossed from up to three different ancestors. We composed a cocktail of three ε2-phages with an overall KHR of 92% and PHR of 96% on 110 S. aureus strains and called it PM-399. PM-399 has a lower propensity to resistance formation than the standard of care antibiotics vancomycin, rifampicin, or their combination, and no resistance was observed in laboratory settings (detection limit: 1 cell in 1011). In summary, ε2-phages and, in particular PM-399, are promising candidates for an alternative treatment of S. aureus infections.

4.
Front Microbiol ; 10: 2289, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649636

RESUMEN

To be successful, academic and commercial efforts to reintroduce phage therapy must ensure that only safe and efficacious products are used to treat patients. This raises a number of manufacturing, formulation, and delivery challenges. Since phages are biologics, robust manufacturing processes will be crucial to avoid unwanted variability in each step of the process. The quality standards themselves need to be developed, as patients are currently being treated with phages produced under quality standards ranging from cGMP for clinical trials in EMA and FDA regulated environments to no standards at all in some last resort treatments. In this short review, we will systematically review the literature covering technical issues and approaches to increase robustness at every step of the production process: the identity of the phage and bacterial production strains, the fermentation process and purification, the formulation of the drug product, the quality controls and the documentation standards themselves. We conclude that it is possible to control cost at the same time, which is critical to re-introduce phage therapy to western medicine.

5.
Front Immunol ; 9: 2770, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564230

RESUMEN

The complement, as part of the innate immune system, represents the first line of defense against Gram-negative bacteria invading the bloodstream. The complement system is a zymogen cascade that ultimately assemble into the so-called membrane attack complex (MAC), which lyses Gram-negative bacteria upon insertion into the outer membrane. Traditionally, serum has been used as complement source, for example to study the bactericidal activity of monoclonal antibodies or antibodies raised upon vaccination. Due to the significant donor to donor variability, as well as susceptibility of complement factors to handling and storage conditions, assay reproducibility using human serum is low. Moreover, the presence of pre-existing antibodies and antimicrobial compounds are confounding factors. To remove antibodies from human serum, we applied κ/λ-light chain specific affinity chromatography, however the method severely reduced the complement activity due to the depletion of complement components. Therefore, we attempted to reconstitute human complement-namely the alternative (rAP) and the classical (rCP) pathways-from purified complement factors. We found that adding C1-inhibitor to the mixture was essential to maintain a stable and functional C1 and thus to generate an active rCP. We further confirmed the functionality of the rCP by testing the complement-dependent bactericidal activity of a human monoclonal antibody, A1124 against an E. coli clinical isolate belonging to the ST131 clonal complex, and that of a polyclonal IVIg against a laboratory E. coli strain (MG1655) not expressing LPS O-antigen and capsule. Although the alternative pathway did not have any bactericidal activity by itself, it enhanced MAC deposition induced by rCP and increased the overall bactericidal activity against the ST131 E. coli strain. In conclusion, we report for the first time the successful in vitro reconstitution of the classical pathway of the human complement to establish a serum-free, complement dependent bactericidal assay. This system offers high level of standardization and could support the study of the complement in different research fields.


Asunto(s)
Bioensayo/métodos , Vía Clásica del Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Actividad Bactericida de la Sangre/inmunología , Activación de Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Vía Alternativa del Complemento/inmunología , Escherichia coli/inmunología , Humanos , Antígenos O/inmunología , Conejos
6.
Artículo en Inglés | MEDLINE | ID: mdl-29686149

RESUMEN

Plasmid-encoded colistin resistance is emerging among extraintestinal pathogenic Escherichia coli strains, including those of the epidemic clone sequence type 131 (ST131)-H30. Mcr-1 transfers a phosphoethanolamine to the lipid A portion of lipopolysaccharide (LPS), conferring resistance to polymyxins. We investigated whether this modification changed the activity of the monoclonal antibody ASN-4, specific to the O25b side chain of ST131 LPS. We confirmed that, unlike colistin, ASN-4 retained its bactericidal and endotoxin-neutralizing activities and therefore offers a treatment option against extremely drug-resistant ST131 isolates.


Asunto(s)
Antibacterianos/farmacología , Anticuerpos Monoclonales/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Escherichia coli/metabolismo , Escherichia coli Patógena Extraintestinal/efectos de los fármacos , Animales , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Endotoxinas/metabolismo , Escherichia coli Patógena Extraintestinal/genética , Femenino , Humanos , Lipopolisacáridos/química , Ratones , Ratones Endogámicos BALB C
7.
Genome Announc ; 6(8)2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472331

RESUMEN

The sequence type 131 (ST131)-H30 clone is responsible for a significant proportion of multidrug-resistant extraintestinal Escherichia coli infections. Recently, the C1-M27 clade of ST131-H30, associated with blaCTX-M-27, has emerged. The complete genome sequence of E. coli isolate 81009 belonging to this clone, previously used during the development of ST131-specific monoclonal antibodies, is reported here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...