Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasitol Int ; 99: 102830, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38016629

RESUMEN

BACKGROUND: The construction of Lake Kariba brought about a rise in the incidence of schistosomiasis in its surrounding towns of Kariba (Zimbabwe) and Siavonga (Zambia). After extensive control programs in Kariba, schistosomiasis prevalence dropped significantly. The objective of this study was to revisit the same localities sampled by Chimbari et al. (2003), and provide an update on the snail community and prevalence of trematodes in the Northern shore of Lake Kariba while focusing on planorbid species. METHODS: Monthly sampling of snails at 16 sites along the Northern shoreline of Lake Kariba, near Kariba town, was undertaken for one year. Minimum one specimen per morphotype was identified using molecular barcoding (sequencing a fragment of cytochrome c oxidase I subunit (COI)). The infection status of snails was assessed by Rapid Diagnostic PCRs (RD-PCR), and trematode infections were genotyped by sequencing COI and 18S rDNA markers. RESULTS: We collected and identified seven snail species: Bulinus truncatus, Bulinus forskalii, Gyraulus sp., Physella acuta, Bellamya sp., Radix affinis plicatula and Pseudosuccinea columella. Physella acuta was the most abundant snail species (comprising 56.95% of the total snail count) and present at all sites. The B. truncatus population was found to be infected with the stomach fluke Carmyerius cruciformis, a Petasiger sp. and a trematode species belonging to the family Notocotylidae. No Schistosoma sp. infections were detected in our collected snail specimens. CONCLUSIONS: We report B. truncatus as an intermediate snail host for Carmyerius cruciformis, and the presence of three non-schistosome trematode species that have not been reported in Lake Kariba before. Furthermore, we detect a possible shift in the snail community when compared to the report by Chimbari et al. (2003): this is the first record of Gyraulus sp. in Lake Kariba, and we did not observe the previously reported B. pfeifferi, B. globosus and Radix natalensis. Although this shift in snail communities might have contributed to the absence of Schistosoma spp. detection in this study, further monitoring of final and intermediate hosts across the Kariba basin is essential to prove a decrease of schistosomiasis in the area.


Asunto(s)
Esquistosomiasis , Trematodos , Animales , Lagos , Trematodos/genética , Bulinus , Esquistosomiasis/epidemiología , Schistosoma/genética
2.
BMC Biol ; 19(1): 160, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34412627

RESUMEN

BACKGROUND: Humans impose a significant pressure on large herbivore populations, such as hippopotami, through hunting, poaching, and habitat destruction. Anthropogenic pressures can also occur indirectly, such as artificial lake creation and the subsequent introduction of invasive species that alter the ecosystem. These events can lead to drastic changes in parasite diversity and transmission, but generally receive little scientific attention. RESULTS: In order to document and identify trematode parasites of the common hippopotamus (Hippopotamus amphibius) in artificial water systems of Zimbabwe, we applied an integrative taxonomic approach, combining molecular diagnostics and morphometrics on archived and new samples. In doing so, we provide DNA reference sequences of the hippopotamus liver fluke Fasciola nyanzae, enabling us to construct the first complete Fasciola phylogeny. We describe parasite spillback of F. nyanzae by the invasive freshwater snail Pseudosuccinea columella, as a consequence of a cascade of biological invasions in Lake Kariba, one of the biggest artificial lakes in the world. Additionally, we report an unknown stomach fluke of the hippopotamus transmitted by the non-endemic snail Radix aff. plicatula, an Asian snail species that has not been found in Africa before, and the stomach fluke Carmyerius cruciformis transmitted by the native snail Bulinus truncatus. Finally, Biomphalaria pfeifferi and two Bulinus species were found as new snail hosts for the poorly documented hippopotamus blood fluke Schistosoma edwardiense. CONCLUSIONS: Our findings indicate that artificial lakes are breeding grounds for endemic and non-endemic snails that transmit trematode parasites of the common hippopotamus. This has important implications, as existing research links trematode parasite infections combined with other stressors to declining wild herbivore populations. Therefore, we argue that monitoring the anthropogenic impact on parasite transmission should become an integral part of wildlife conservation efforts.


Asunto(s)
Artiodáctilos , Parásitos , Enfermedades Parasitarias , Animales , Efectos Antropogénicos , Artiodáctilos/parasitología , Bulinus , Ecosistema , Caza , Lagos , Caracoles , Zimbabwe/epidemiología
3.
Front Vet Sci ; 7: 605280, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363243

RESUMEN

Trematodes are snail-borne parasites of major zoonotic importance that infect millions of people and animals worldwide and frequently hybridize with closely related species. Therefore, it is desirable to study trematodiases in a One Health framework, where human and animal trematodes are considered equally important. It is within this framework that we set out to study the snail and trematode communities in four artificial lakes and an abattoir in Zimbabwe. Trematode infections in snails were detected through multiplex PCR protocols. Subsequently, we identified snails by sequencing a partial mitochondrial cytochrome c oxidase subunit I (COI) fragment, and trematodes (adults from the abattoir and larval stages detected in snails) using COI and nuclear rDNA markers. Of the 1,674 collected snails, 699 were molecularly analyzed, in which we identified 12 snail and 19 trematode species. Additionally, three parasite species were sampled from the abattoir. Merely four trematode species were identified to species level through COI-based barcoding. Moreover, identification of members of the superfamilies Opisthorchioidea and Plagiorchioidea required a phylogenetic inference using the highly conserved 18S rDNA marker, as no related COI reference sequences were present in public databases. These barcoding challenges demonstrate a severe barcoding void in the available databases, which can be attributed to the neglected status of trematodiases. Adding to this, many available sequences cannot be used as different studies use different markers. To fill this gap, more studies on African trematodes, using a standardized COI barcoding region, are desperately needed.

4.
Sci Total Environ ; 659: 1283-1292, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31096340

RESUMEN

Parasite spillback, the infection of a non-indigenous organism by a native parasite, is a highly important although understudied component of ecological invasion dynamics. Here, through the first analysis of the parasite fauna of lymnaeid gastropods of Lake Kariba (Zimbabwe). We illustrate how the creation of an artificial lake may lead to a cascade of biological invasions in which an invasive aquatic plant promotes the proliferation of invasive gastropods, which in turn alters the epidemiology of trematodiases of potential medical and veterinary importance. Using a new multiplex Rapid Diagnostic PCR assay, we assessed the prevalence of Fasciola sp. infections in the gastropod populations. Both gastropod hosts and trematode parasites were identified using DNA barcoding. We provide the first record of the invasive North-American gastropod Pseudosuccinea columella in Lake Kariba. This species was found at 14 out of 16 sampled sites and its abundance was strongly positively correlated with the abundance of the invasive South-American water hyacinth (Eichhornia crassipes). About 65% of the P. columella specimens analysed were infected with a hitherto unknown Fasciola species. Phylogenetic analyses indicate close affinity to Fasciola hepatica and F. gigantica, which cause fasciolosis, an important liver disease affecting both ruminants and humans. In addition, another non-native Lymnaeid species was found: a Radix sp. that clustered closely with a Vietnamese Radix species. Radix sp. hosted both amphistome and Fasciola trematodes. By linking an invasion cascade and parasite spillback, this study shows how both processes can act in combination to lead to potentially important epidemiological changes.


Asunto(s)
Monitoreo del Ambiente , Especies Introducidas , Lagos/parasitología , Animales , Vectores de Enfermedades , Fasciola hepatica , Gastrópodos/parasitología , Interacciones Huésped-Parásitos , Humanos , Parásitos/clasificación , Parásitos/crecimiento & desarrollo , Filogenia , Rumiantes , Zimbabwe
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...