Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38660804

RESUMEN

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 and PGD2, activation of the inflammasome, elevated plasma levels of IL-1ß, reduced plasma levels of HDL-C, and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.

2.
Mol Ther Nucleic Acids ; 35(2): 102175, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38576454

RESUMEN

RNA therapeutics are an emerging, powerful class of drugs with potential applications in a wide range of disorders. A central challenge in their development is the lack of clear pharmacokinetic (PK)-pharmacodynamic relationship, in part due to the significant delay between the kinetics of RNA delivery and the onset of pharmacologic response. To bridge this gap, we have developed a physiologically based PK/pharmacodynamic model for systemically administered mRNA-containing lipid nanoparticles (LNPs) in mice. This model accounts for the physiologic determinants of mRNA delivery, active targeting in the vasculature, and differential transgene expression based on nanoparticle coating. The model was able to well-characterize the blood and tissue PKs of LNPs, as well as the kinetics of tissue luciferase expression measured by ex vivo activity in organ homogenates and bioluminescence imaging in intact organs. The predictive capabilities of the model were validated using a formulation targeted to intercellular adhesion molecule-1 and the model predicted nanoparticle delivery and luciferase expression within a 2-fold error for all organs. This modeling platform represents an initial strategy that can be expanded upon and utilized to predict the in vivo behavior of RNA-containing LNPs developed for an array of conditions and across species.

3.
Crit Care Med ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578158

RESUMEN

OBJECTIVES: Quantify the relationship between perioperative anaerobic lactate production, microcirculatory blood flow, and mitochondrial respiration in patients after cardiovascular surgery with cardiopulmonary bypass. DESIGN: Serial measurements of lactate-pyruvate ratio (LPR), microcirculatory blood flow, plasma tricarboxylic acid cycle cycle intermediates, and mitochondrial respiration were compared between patients with a normal peak lactate (≤ 2 mmol/L) and a high peak lactate (≥ 4 mmol/L) in the first 6 hours after surgery. Regression analysis was performed to quantify the relationship between clinically relevant hemodynamic variables, lactate, LPR, and microcirculatory blood flow. SETTING: This was a single-center, prospective observational study conducted in an academic cardiovascular ICU. PATIENTS: One hundred thirty-two patients undergoing elective cardiovascular surgery with cardiopulmonary bypass. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients with a high postoperative lactate were found to have a higher LPR compared with patients with a normal postoperative lactate (14.4 ± 2.5 vs. 11.7 ± 3.4; p = 0.005). Linear regression analysis found a significant, negative relationship between LPR and microcirculatory flow index (r = -0.225; ß = -0.037; p = 0.001 and proportion of perfused vessels: r = -0.17; ß = -0.468; p = 0.009). There was not a significant relationship between absolute plasma lactate and microcirculation variables. Last, mitochondrial complex I and complex II oxidative phosphorylation were reduced in patients with high postoperative lactate levels compared with patients with normal lactate (22.6 ± 6.2 vs. 14.5 ± 7.4 pmol O2/s/106 cells; p = 0.002). CONCLUSIONS: Increased anaerobic lactate production, estimated by LPR, has a negative relationship with microcirculatory blood flow after cardiovascular surgery. This relationship does not persist when measuring lactate alone. In addition, decreased mitochondrial respiration is associated with increased lactate after cardiovascular surgery. These findings suggest that high lactate levels after cardiovascular surgery, even in the setting of normal hemodynamics, are not simply a type B phenomenon as previously suggested.

4.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454606

RESUMEN

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Liposomas , Nanopartículas , Molécula 1 de Adhesión Celular Vascular , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Animales , Ratones , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Nanopartículas/química , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Lípidos/química , Sistemas de Liberación de Medicamentos/métodos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Humanos
5.
J Colloid Interface Sci ; 664: 1042-1055, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38522178

RESUMEN

Conjugating biomolecules, such as antibodies, to bioconjugate moieties on lipid surfaces is a powerful tool for engineering the surface of diverse biomaterials, including cells and nanoparticles. We developed supported lipid bilayers (SLBs) presenting well-defined spatial distributions of functional moieties as models for precisely engineered functional biomolecular-lipid surfaces. We used quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM) to determine how vesicles containing a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[azido(polyethylene glycol)-2000] (DSPE-PEG-N3) form SLBs as a function of the lipid phase transition temperature (Tm). Above the DPPC Tm, DPPC/DSPE-PEG-N3 vesicles form SLBs with functional azide moieties on SiO2 substrates via vesicle fusion. Below this Tm, DPPC/DSPE-PEG-N3 vesicles attach to SiO2 intact. Intact DPPC/DSPE-PEG-N3 vesicles on the SiO2 surfaces fuse and rupture to form SLBs when temperature is brought above the DPPC Tm. AFM studies show uniform and complete DPPC/DSPE-PEG-N3 SLB coverage of SiO2 surfaces for different DSPE-PEG-N3 concentrations. As the DSPE-PEG-N3 concentration increases from 0.01 to 6 mol%, the intermolecular spacing of DSPE-PEG-N3 in the SLBs decreases from 4.6 to 1.0 nm. The PEG moiety undergoes a mushroom to brush transition as DSPE-PEG-N3 concentration varies from 0.1 to 2.0 mol%. Via copper-free click reaction, IgG was conjugated to SLB surfaces with 4.6 nm or 1.3 nm inter-DSPE-PEG-N3 spacing. QCM-D and AFM data show; 1) uniform and complete IgG layers of similar mass and thickness on the two types of SLB; 2) a higher-viscosity/less rigid IgG layer on the SLB with 4.6 nm inter-DSPE-PEG-N3 spacing. Our studies provide a blueprint for SLBs modeling spatial control of functional macromolecules on lipid surfaces, including surfaces of lipid nanoparticles and cells.


Asunto(s)
Membrana Dobles de Lípidos , Dióxido de Silicio , Membrana Dobles de Lípidos/química , Dióxido de Silicio/química , Polietilenglicoles/química , Inmunoglobulina G
6.
Bioengineering (Basel) ; 11(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534474

RESUMEN

The neuroinflammatory cascade triggered by traumatic brain injury (TBI) represents a clinically important point for therapeutic intervention. Neuroinflammation generates oxidative stress in the form of high-energy reactive oxygen and nitrogen species, which are key mediators of TBI pathology. The role of the blood-brain barrier (BBB) is essential for proper neuronal function and is vulnerable to oxidative stress. Results herein explore the notion that attenuating oxidative stress at the vasculature after TBI may result in improved BBB integrity and neuroprotection. Utilizing amino-chemistry, a biological construct (designated "dual conjugate" for short) was generated by covalently binding two antioxidant enzymes (superoxide dismutase 1 (SOD-1) and catalase (CAT)) to antibodies specific for ICAM-1. Bioengineering of the conjugate preserved its targeting and enzymatic functions, as evaluated by real-time bioenergetic measurements (via the Seahorse-XF platform), in brain endothelial cells exposed to increasing concentrations of hydrogen peroxide or a superoxide anion donor. Results showed that the dual conjugate effectively mitigated the mitochondrial stress due to oxidative damage. Furthermore, dual conjugate administration also improved BBB and endothelial protection under oxidative insult in an in vitro model of TBI utilizing a software-controlled stretching device that induces a 20% in mechanical strain on the endothelial cells. Additionally, the dual conjugate was also effective in reducing indices of neuroinflammation in a controlled cortical impact (CCI)-TBI animal model. Thus, these studies provide proof of concept that targeted dual antioxidant biologicals may offer a means to regulate oxidative stress-associated cellular damage during neurotrauma.

7.
Adv Mater ; : e2312026, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394670

RESUMEN

Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up or down-regulate any protein of interest. LNPs have mostly been targeted to specific cell types or organs by physicochemical targeting in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. Here lung-tropic LNPs are examined, whose organ tropism derives from containing either a cationic or ionizable lipid conferring a positive zeta potential. Surprisingly, these LNPs are found to induce massive thrombosis. Such thrombosis is shown in the lungs and other organs, and it is shown that it is greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles, and even by lung-tropic ionizable lipids that do not have a permanent cationic charge. The mechanism depends on the LNPs binding to and then changing the conformation of fibrinogen, which then activates platelets and thrombin. Based on these mechanisms, multiple solutions are engineered that enable positively charged LNPs to target the lungs while ameliorating thrombosis. The findings illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.

8.
Mol Pharm ; 20(11): 5476-5485, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37823223

RESUMEN

Thromboprophylaxis is indicated in patients at an elevated risk of developing thrombotic disorders, typically using direct oral anticoagulants or low-molecular-weight heparins. We postulated that transient thromboprophylaxis (days-weeks) could be provided by a single dose of an anticoagulant engineered for prolonged pharmacokinetics. In the present work, d-phenylalanyl-l-prolyl-l-arginine chloromethyl ketone (PPACK) was used as a model anticoagulant to test the hypothesis that conjugation of thrombin inhibitors to the surface of albumin would provide durable protection against thrombotic insults. Covalent conjugates were formed between albumin and PPACK using click chemistry, and they were tested in vitro using a thrombin activity assay and a clot formation assay. Thromboprophylactic efficacy was tested in mouse models of arterial thrombosis, both chemically induced (FeCl3) and following ischemia-reperfusion (transient middle cerebral artery occlusion; tMCAO). Albumin-PPACK conjugates were shown to have nanomolar potency in both in vitro assays, and following intravenous injection had prolonged circulation. Conjugates did not impact hemostasis (tail clipping) or systemic coagulation parameters in normal mice. Intravenous injection of conjugates prior to FeCl3-induced thrombosis provided significant protection against occlusion of the middle cerebral and common carotid arteries, and injection immediately following ischemia-reperfusion reduced stroke volume measured 3 days after injury by ∼40% in the tMCAO model. The data presented here provide support for the use of albumin-linked anticoagulants as an injectable, long-circulating, safe thromboprophylactic agent. In particular, albumin-PPACK provides significant protection against thrombosis induced by multiple mechanisms, without adversely affecting hemostasis.


Asunto(s)
Trombosis , Tromboembolia Venosa , Humanos , Ratones , Animales , Anticoagulantes/uso terapéutico , Trombina/uso terapéutico , Tromboembolia Venosa/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Clorometilcetonas de Aminoácidos/farmacología , Clorometilcetonas de Aminoácidos/uso terapéutico , Isquemia
9.
Microvasc Res ; 150: 104595, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37619889

RESUMEN

INTRODUCTION: Microcirculatory dysfunction after cardiovascular surgery is associated with significant morbidity and worse clinical outcomes. Abnormal capillary blood flow can occur from multiple causes, including cytokine-mediated vascular endothelial injury, microthrombosis, and an inadequate balance between vasoconstriction and vasodilation. In response to proinflammatory cytokines, endothelial cells produce cellular adhesion molecules (CAMs) which regulate leukocyte adhesion, vascular permeability, and thus can mediate tissue injury. The relationship between changes in microcirculatory flow during circulatory shock and circulating adhesion molecules is unclear. The objective of this study was to compare changes in plasma soluble endothelial cell adhesion molecules (VCAM-1, ICAM-1, and E-Selectin) in patients with functional derangements in microcirculatory blood flow after cardiovascular surgery. METHODS: Adult patients undergoing elective cardiac surgery requiring cardiopulmonary bypass who exhibited postoperative shock were enrolled in the study. Sublingual microcirculation imaging was performed prior to surgery and within 2 h of ICU admission. Blood samples were taken at the time of microcirculation imaging for biomarker analysis. Plasma soluble VCAM-1, ICAM-1, and E-selectin in addition to plasma cytokines (IL-6, IL-8, and IL-10) were measured by commercially available enzyme-linked immunoassay. RESULTS: Of 83 patients with postoperative shock who were evaluated, 40 patients with clinical shock had a postoperative perfused vessel density (PVD) >1 SD above (High PVD group = 28.5 ± 2.3 mm/mm2, n = 20) or below (Low PVD = 15.5 ± 2.0 mm/mm2, n = 20) the mean postoperative PVD and were included in the final analysis. Patient groups were well matched for comorbidities, surgical, and postoperative details. Overall, there was an increase in postoperative plasma VCAM-1 and E-Selectin compared to preoperative levels, but there was no difference between circulating ICAM-1. When grouped by postoperative microcirculation, patients with poor microcirculation were found to have increased circulating VCAM-1 (2413 ± 1144 vs. 844 ± 786 ng/mL; p < 0.0001) and E-Selectin (242 ± 119 vs. 87 ± 86 ng/mL; p < 0.0001) compared to patients with increased microcirculatory blood flow. Microcirculatory flow was not associated with a difference in plasma soluble ICAM-1 (394 ± 190 vs. 441 ± 256; p = 0.52). CONCLUSIONS: Poor postoperative microcirculatory blood flow in patients with circulatory shock after cardiac surgery is associated with increased plasma soluble VCAM-1 and E-Selectin, indicating increased endothelial injury and activation compared to patients with a high postoperative microcirculatory blood flow. Circulating endothelial cell adhesion molecules may be a useful plasma biomarker to identify abnormal microcirculatory blood flow in patients with shock.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Molécula 1 de Adhesión Intercelular , Adulto , Humanos , Selectina E , Microcirculación , Molécula 1 de Adhesión Celular Vascular , Células Endoteliales , Procedimientos Quirúrgicos Cardíacos/efectos adversos
10.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398465

RESUMEN

After more than 100 failed drug trials for acute ischemic stroke (AIS), one of the most commonly cited reasons for the failure has been that drugs achieve very low concentrations in the at-risk penumbra. To address this problem, here we employ nanotechnology to significantly enhance drug concentration in the penumbra's blood-brain barrier (BBB), whose increased permeability in AIS has long been hypothesized to kill neurons by exposing them to toxic plasma proteins. To devise drug-loaded nanocarriers targeted to the BBB, we conjugated them with antibodies that bind to various cell adhesion molecules on the BBB endothelium. In the transient middle cerebral artery occlusion (tMCAO) mouse model, nanocarriers targeted with VCAM antibodies achieved the highest level of brain delivery, nearly 2 orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles loaded with either a small molecule drug (dexamethasone) or mRNA (encoding IL-10) reduced cerebral infarct volume by 35% or 73%, respectively, and both significantly lowered mortality rates. In contrast, the drugs delivered without the nanocarriers had no effect on AIS outcomes. Thus, VCAM-targeted lipid nanoparticles represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS. Graphical abstract: Acute ischemic stroke induces upregulation of VCAM. We specifically targeted upregulated VCAM in the injured region of the brain with drug- or mRNA-loaded targeted nanocarriers. Nanocarriers targeted with VCAM antibodies achieved the highest brain delivery, nearly orders of magnitude higher than untargeted ones. VCAM-targeted nanocarriers loaded with dexamethasone and mRNA encoding IL-10 reduced infarct volume by 35% and 73%, respectively, and improved survival rates.

11.
ACS Nano ; 17(14): 13121-13136, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37432926

RESUMEN

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.


Asunto(s)
Sistemas de Liberación de Medicamentos , Pulmón , Ratones , Animales , Pulmón/metabolismo , Encéfalo/metabolismo , Liposomas/metabolismo , Leucocitos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
12.
J Control Release ; 356: 185-195, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36868517

RESUMEN

Intracerebral hemorrhage (ICH) is one of the most common causes of fatal stroke, yet has no specific drug therapies. Many attempts at passive intravenous (IV) delivery in ICH have failed to deliver drugs to the salvageable area around the hemorrhage. The passive delivery method assumes vascular leak through the ruptured blood-brain barrier will allow drug accumulation in the brain. Here we tested this assumption using intrastriatal injection of collagenase, a well-established experimental model of ICH. Fitting with hematoma expansion in clinical ICH, we showed that collagenase-induced blood leak drops significantly by 4 h after ICH onset and is gone by 24 h. We observed passive-leak brain accumulation also declines rapidly over ∼4 h for 3 model IV therapeutics (non-targeted IgG; a protein therapeutic; PEGylated nanoparticles). We compared these passive leak results with targeted brain delivery by IV monoclonal antibodies (mAbs) that actively bind vascular endothelium (anti-VCAM, anti-PECAM, anti-ICAM). Even at early time points after ICH induction, where there is high vascular leak, brain accumulation via passive leak is dwarfed by brain accumulation of endothelial-targeted agents: At 4 h after injury, anti-PECAM mAbs accumulate at 8-fold higher levels in the brain vs. non-immune IgG; anti-VCAM nanoparticles (NPs) deliver a protein therapeutic (superoxide dismutase, SOD) at 4.5-fold higher levels than the carrier-free therapeutic at 24 h after injury. These data suggest that relying on passive vascular leak provides inefficient delivery of therapeutics even at early time points after ICH, and that a better strategy might be targeted delivery to the brain endothelium, which serves as the gateway for the immune attack on the peri-hemorrhage inflamed brain region.


Asunto(s)
Encéfalo , Hemorragia Cerebral , Animales , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/metabolismo , Encéfalo/metabolismo , Endotelio Vascular/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/metabolismo , Colagenasas/efectos adversos , Colagenasas/metabolismo , Inmunoglobulina G/uso terapéutico , Modelos Animales de Enfermedad
13.
Sci Adv ; 9(12): eadd5028, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947620

RESUMEN

Endothelial cells (ECs) grant access of disseminated cancer cells to distant organs. However, the molecular players regulating the activation of quiescent ECs at the premetastatic niche (PMN) remain elusive. Here, we find that ECs at the PMN coexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its cognate death receptor 5 (DR5). Unexpectedly, endothelial TRAIL interacts intracellularly with DR5 to prevent its signaling and preserve a quiescent vascular phenotype. In absence of endothelial TRAIL, DR5 activation induces EC death and nuclear factor κB/p38-dependent EC stickiness, compromising vascular integrity and promoting myeloid cell infiltration, breast cancer cell adhesion, and metastasis. Consistently, both down-regulation of endothelial TRAIL at the PMN by proangiogenic tumor-secreted factors and the presence of the endogenous TRAIL inhibitors decoy receptor 1 (DcR1) and DcR2 favor metastasis. This study discloses an intracrine mechanism whereby TRAIL blocks DR5 signaling in quiescent endothelia, acting as gatekeeper of the vascular barrier that is corrupted by the tumor during cancer cell dissemination.


Asunto(s)
Neoplasias de la Mama , Células Endoteliales , Humanos , Femenino , Células Endoteliales/metabolismo , Ligandos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF , Apoptosis/genética , Factor de Necrosis Tumoral alfa/farmacología
14.
Sci Rep ; 12(1): 15257, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36088474

RESUMEN

Persistent abnormalities in microcirculatory function are associated with poor clinical outcomes in patients with circulatory shock. We sought to identify patients with acutely reversible microcirculatory dysfunction using a low-dose topical nitroglycerin solution and handheld videomicroscopy during circulatory shock after cardiac surgery. Forty subjects were enrolled for the study, including 20 preoperative control and 20 post-operative patients with shock. To test whether microcirculatory dysfunction is acutely reversible during shock, the sublingual microcirculation was imaged with incident dark field microscopy before and after the application of 0.1 mL of a 1% nitroglycerin solution (1 mg/mL). Compared to the control group, patients with shock had a higher microcirculation heterogeneity index (MHI 0.33 vs. 0.12, p < 0.001) and a lower microvascular flow index (MFI 2.57 vs. 2.91, p < 0.001), total vessel density (TVD 22.47 vs. 25.90 mm/mm2, p = 0.005), proportion of perfused vessels (PPV 90.76 vs. 95.89%, p < 0.001) and perfused vessel density (PVD 20.44 vs. 24.81 mm/mm2, p < 0.001). After the nitroglycerin challenge, patients with shock had an increase in MFI (2.57 vs. 2.97, p < 0.001), TVD (22.47 vs. 27.51 mm/mm2, p < 0.009), PPV (90.76 vs. 95.91%, p < 0.001), PVD (20.44 vs. 26.41 mm/mm2, p < 0.001), venular RBC velocity (402.2 vs. 693.9 µm/s, p < 0.0004), and a decrease in MHI (0.33 vs. 0.04, p < 0.001. Thirteen of 20 patients showed a pharmacodynamic response, defined as an increase in PVD > 1.8 SD from shock baseline. Hemodynamics and vasoactive doses did not change during the 30-min study period. Our findings suggest a topical nitroglycerin challenge with handheld videomicroscopy can safely assess for localized recruitment of the microcirculatory blood flow in patients with circulatory shock and may be a useful test to identify nitroglycerin responsiveness.


Asunto(s)
Nitroglicerina , Choque , Hemodinámica/fisiología , Humanos , Microcirculación/fisiología , Microscopía por Video
15.
PLoS One ; 17(8): e0273349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36018848

RESUMEN

BACKGROUND: Despite current resuscitation strategies, circulatory shock and organ injury after cardiac surgery occur in 25-40% of patients. Goal-directed resuscitation after cardiac surgery has generated significant interest, but clinical practice to normalize hemodynamic variables including mean arterial pressure, cardiac filling pressures, and cardiac output may not reverse microcirculation abnormalities and do not address cellular dysoxia. Recent advances in technology have made it possible to measure critical components of oxygen delivery and oxygen utilization systems in live human tissues and blood cells. The MicroRESUS study will be the first study to measure microcirculatory and mitochondrial function in patients with circulatory shock and link these findings with clinical outcomes. METHODS AND ANALYSIS: This will be a prospective, observational study that includes patients undergoing elective cardiovascular surgery with cardiopulmonary bypass (CPB). Microcirculation will be quantified with sublingual incident dark field videomicroscopy. Mitochondrial respiration will be measured by performing a substrate-uncoupler-inhibitor titration protocol with high resolution respirometry on peripheral blood mononuclear cells at baseline and serial timepoints during resuscitation and at recovery as a possible liquid biomarker. Plasma samples will be preserved for future analysis to examine endothelial injury and other mechanisms of microcirculatory dysfunction. Thirty-day ventilator and vasopressor-free days (VVFDs) will be measured as a primary outcome, along with sequential organ failure assessment scores, and other clinical parameters to determine if changes in microcirculation and mitochondrial respiration are more strongly associated with clinical outcomes compared to traditional resuscitation targets. DISCUSSION: This will be the first prospective study to examine both microcirculatory and mitochondrial function in human patients with circulatory shock undergoing cardiac bypass and address a key mechanistic knowledge gap in the cardiovascular literature. The results of this study will direct future research efforts and therapeutic development for patients with shock.


Asunto(s)
Leucocitos Mononucleares , Choque , Hemodinámica , Humanos , Microcirculación , Mitocondrias , Estudios Observacionales como Asunto , Oxígeno , Estudios Prospectivos , Respiración , Resucitación
16.
Adv Sci (Weinh) ; 9(24): e2201293, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780495

RESUMEN

Adeno-associated virus (AAV)-mediated gene therapy is a promising therapeutic modality for curing many diseases including monogenic diseases. However, limited tissue-targeting and restricted re-administration due to the vector immunogenicity largely restrict its therapeutic potential. Here, using a red blood cell (RBC) as the carrier vehicle for AAV is demonstrated to improve its tissue-targeted transduction and enable its re-administration. Anchoring AAV to the RBC surface minimally affected its infectability toward endothelial cells. Meanwhile, AAV anchored onto RBCs is predominantly delivered to and shows efficient transduction in the lungs by virtue of the biophysical features of RBCs. RBC-anchored AAVs lead to a four- to five-fold enhancement in target gene expression in the lungsas compared to free AAVs following a single- or dual-dosing regimen. While RBC anchoring does not prevent the induction of adaptive immune responses against AAV, it results in successful transgene expression upon re-administration following prior AAV exposure. The ability to re-administer is partially attributed to the delayed and reduced AAV neutralization by neutralizing antibodies, resulting from the combination of limited exposure of physically confined AAVs and the short time required to reach the lungs. This study's findings suggest that the RBC-mediated approach is a promising strategy for repetitive, targeted AAV gene therapy.


Asunto(s)
Dependovirus , Vectores Genéticos , Dependovirus/genética , Células Endoteliales , Eritrocitos , Terapia Genética
17.
Bioconjug Chem ; 33(7): 1286-1294, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35710322

RESUMEN

Engineering drug delivery systems for prolonged pharmacokinetics (PK) has been an ongoing pursuit for nearly 50 years. The gold standard for PK enhancement is the coating of nanoparticles with polymers, namely polyethylene glycol (PEGylation), which has been applied in several clinically used products. In the present work, we utilize the longest circulating and most abundant component of blood─the erythrocyte─to improve the PK behavior of liposomes. Antibody-mediated coupling of liposomes to erythrocytes was tested in vitro to identify a loading dose that did not adversely impact the carrier cells. Injection of erythrocyte targeting liposomes into mice resulted in a ∼2-fold improvement in the area under the blood concentration versus time profile versus PEGylated liposomes and a redistribution from the plasma into the cellular fraction of blood. These results suggest that in vivo targeting of erythrocytes is a viable strategy to improve liposome PK relative to current, clinically viable strategies.


Asunto(s)
Liposomas , Polietilenglicoles , Animales , Sistemas de Liberación de Medicamentos , Eritrocitos , Liposomas/farmacocinética , Ratones , Polietilenglicoles/farmacocinética , Polímeros
18.
ACS Nano ; 16(3): 4666-4683, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35266686

RESUMEN

A long-standing goal of nanomedicine is to improve a drug's benefit by loading it into a nanocarrier that homes solely to a specific target cell and organ. Unfortunately, nanocarriers usually end up with only a small percentage of the injected dose (% ID) in the target organ, due largely to clearance by the liver and spleen. Further, cell-type-specific targeting is rarely achieved without reducing target organ accumulation. To solve these problems, we introduce DART (dual affinity to RBCs and target cells), in which nanocarriers are conjugated to two affinity ligands, one binding red blood cells and one binding a target cell (here, pulmonary endothelial cells). DART nanocarriers first bind red blood cells and then transfer to the target organ's endothelial cells as the bound red blood cells squeeze through capillaries. We show that within minutes after intravascular injection in mice nearly 70% ID of DART nanocarriers accumulate in the target organ (lungs), more than doubling the % ID ceiling achieved by a multitude of prior technologies, finally achieving a majority % ID in a target organ. Humanized DART nanocarriers in ex vivo perfused human lungs recapitulate this phenomenon. Furthermore, DART enhances the selectivity of delivery to target endothelial cells over local phagocytes within the target organ by 6-fold. DART's marked improvement in both organ- and cell-type targeting may thus be helpful in localizing drugs for a multitude of medical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Portadores de Fármacos/metabolismo , Células Endoteliales/metabolismo , Eritrocitos , Pulmón/metabolismo , Ratones , Preparaciones Farmacéuticas
19.
Adv Drug Deliv Rev ; 184: 114180, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35271986

RESUMEN

Acute inflammation is a common dangerous component of pathogenesis of many prevalent conditions with high morbidity and mortality including sepsis, thrombosis, acute respiratory distress syndrome (ARDS), COVID-19, myocardial and cerebral ischemia-reperfusion, infection, and trauma. Inflammatory changes of the vasculature and blood mediate the course and outcome of the pathology in the tissue site of insult, remote organs and systemically. Endothelial cells lining the luminal surface of the vasculature play the key regulatory functions in the body, distinct under normal vs. pathological conditions. In theory, pharmacological interventions in the endothelial cells might enable therapeutic correction of the overzealous damaging pro-inflammatory and pro-thrombotic changes in the vasculature. However, current agents and drug delivery systems (DDS) have inadequate pharmacokinetics and lack the spatiotemporal precision of vascular delivery in the context of acute inflammation. To attain this level of precision, many groups design DDS targeted to specific endothelial surface determinants. These DDS are able to provide specificity for desired tissues, organs, cells, and sub-cellular compartments needed for a particular intervention. We provide a brief overview of endothelial determinants, design of DDS targeted to these molecules, their performance in experimental models with focus on animal studies and appraisal of emerging new approaches. Particular attention is paid to challenges and perspectives of targeted therapeutics and nanomedicine for advanced management of acute inflammation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Trombosis , Animales , Portadores de Fármacos/uso terapéutico , Células Endoteliales , Endotelio Vascular , Humanos , Inflamación/tratamiento farmacológico
20.
Adv Mater ; 34(8): e2107070, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34910334

RESUMEN

Complement opsonization is among the biggest challenges facing nanomedicine. Nearly instantly after injection into blood, nanoparticles are opsonized by the complement protein C3, leading to clearance by phagocytes, fouling of targeting moieties, and release of anaphylatoxins. While surface polymers such as poly(ethylene glycol) (PEG) partially decrease complement opsonization, most nanoparticles still suffer from extensive complement opsonization, especially when linked to targeting moieties. To ameliorate the deleterious effects of complement, two of mammals' natural regulators of complement activation (RCAs), Factors H and I, are here conjugated to the surface of nanoparticles. In vitro, Factor H or I conjugation to PEG-coated nanoparticles decrease their C3 opsonization, and markedly reduce nanoparticle uptake by phagocytes. In an in vivo mouse model of sepsis-induced lung injury, Factor I conjugation abrogates nanoparticle uptake by intravascular phagocytes in the lungs, allowing the blood concentration of the nanoparticle to remain elevated much longer. For nanoparticles targeted to the lung's endothelium by conjugation to anti-ICAM antibodies, Factor I conjugation shifts the cell-type distribution away from phagocytes and toward endothelial cells. Finally, Factor I conjugation abrogates the severe anaphylactoid responses common to many nanoparticles, preventing systemic capillary leak and preserving blood flow to visceral organs and the brain. Thus, conjugation of RCAs, like Factor I, to nanoparticles is likely to help in nanomedicine's long battle against complement, improving several key parameters critical for clinical success.


Asunto(s)
Complemento C3 , Nanomedicina , Nanopartículas , Animales , Activación de Complemento , Complemento C3/metabolismo , Complemento C3/farmacología , Factor H de Complemento/uso terapéutico , Células Endoteliales/metabolismo , Fibrinógeno/uso terapéutico , Mamíferos/metabolismo , Ratones , Nanomedicina/métodos , Nanopartículas/efectos adversos , Nanopartículas/uso terapéutico , Opsonización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...