Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767287

RESUMEN

As the concept of high-entropy alloying (HEA) extends beyond metals, new materials screening methods are needed. Halide perovskites (HP) are a prime case study because greater stability is needed for photovoltaics applications, and there are 322 experimentally observed HP end-members, which leads to more than 1057 potential alloys. We screen HEAHP by first calculating the configurational entropy of 106 equimolar alloys with experimentally observed end-members. To estimate enthalpy at low computational cost, we turn to the delta-lattice parameter approach, a well-known method for predicting III-V alloy miscibility. To generalize the approach for non-cubic crystals, we introduce the parameter of unit cell volume coefficient of variation (UCV), which does a good job of predicting the experimental HP miscibility data. We use plots of entropy stabilization versus UCV to screen promising alloys and identify 102 HEAHP of interest.

2.
ACS Energy Lett ; 9(4): 1617-1623, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633996

RESUMEN

A hierarchical transparent back contact leveraging an AlGaOx passivating layer, Ti3C2Tx MXene with a high work function, and a transparent cracked film lithography (CFL) templated nanogrid is demonstrated on copper-free cadmium telluride (CdTe) devices. AlGaOx improves device open-circuit voltage but reduces the fill factor when using a CFL-templated metal contact. Including a Ti3C2Tx interlayer improves the fill factor, lowers detrimental Schottky barriers, and enables metallization with CFL by providing transverse conduction into the nanogrid. The bifacial performance of an AlGaOx/Ti3C2Tx/CFL gold contact is evaluated, reaching 19.5% frontside efficiency and 2.8% backside efficiency under 1-sun illumination for a copper-free, group-V doped CdTe device. Under dual illumination, device power generation reached 200 W/m2 with 0.1 sun backside illumination.

3.
Small ; 19(28): e2301939, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010046

RESUMEN

Bifacial CdTe solar cells with greater power density than the monofacial baselines are demonstrated by using a CuGaOx rear interface buffer that passivates while reducing sheet resistance and contact resistance. Inserting CuGaOx between the CdTe and Au increases mean power density from 18.0 ± 0.5 to 19.8 ± 0.4 mW cm-2 for one sun front illumination. However, coupling CuGaOx with a transparent conductive oxide leads to an electrical barrier. Instead, CuGaOx is integrated with cracked film lithography (CFL)-patterned metal grids. CFL grid wires are spaced narrowly enough (≈10 µm) to alleviate semiconductor resistance while retaining enough passivation and transmittance for a bifacial power gain: bifacial CuGaOx /CFL grids generate 19.1 ± 0.6 mW cm-2 for 1 sun front + 0.08 sun rear illumination and 20.0 ± 0.6 mW cm-2 at 1 sun front + 0.52 sun rear-the highest reported power density at field albedo conditions for a scaled polycrystalline absorber.

4.
ACS Appl Mater Interfaces ; 14(49): 54607-54615, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36469676

RESUMEN

We report on a semi-monolithic integration method to circumvent processing incompatibility between materials of dissimilar classes and combine them into multijunction devices for photovoltaic and photoelectrochemical applications. Proof-of-concept all-chalcopyrite tandems were obtained by consecutive transfer of fully integrated unpatterned 1.85 eV CuGa3Se5 and 1.13 eV CuInGaSe2 PV stacks from their Mo/soda lime glass substrates onto a new single host substrate. This transfer approach consists of two key steps: (1) bonding of the solar stack (face down) onto a handle (e.g., SnO2:F, FTO) using a transparent conductive composite and (2) delamination of the solar stack at the chalcopyrite/Mo interface by employing a wedge-based exfoliation technique. Upon transfer onto FTO, a CuGa3Se5 champion device demonstrated near-coincident photocurrent density-voltage characteristic with a baseline measurement. Then, the exfoliated CuGa3Se5 single-junction stack transferred onto FTO served as the new host onto which a second fully processed CuInGaSe2 stack was bonded (face down) onto and liberated from its Mo/SLG substrate, leading to a complete transfer of both sub-cells onto one FTO substrate. A champion semi-monolithic tandem device exhibited a power conversion efficiency of 5.04% with an open-circuit voltage, a short-circuit current density, and a fill factor of 1.24 V, 7.19 mA/cm2, and 56.7%, respectively. This first-time demonstration of a fully operational semi-monolithic device provides a new avenue to combine thermally, mechanically, and/or chemically incompatible thin-film material classes into tandem photovoltaic and photoelectrochemical devices while maintaining state-of-the-art sub-cell processing.

5.
ACS Appl Mater Interfaces ; 12(37): 41471-41476, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32820889

RESUMEN

We introduce cracked film lithography (CFL) as a way to reduce the cost of III-V photovoltaics (PV). We spin-coat nanoparticle suspensions onto GaAs thin-film device stacks. The suspensions dry in seconds, forming crack networks that we use as templates through which to electroplate the solar cells' front metal grids. For the first time, we show that heating the crack template allows it to flow and refill cracks, which decreases crack footprint and improves final grid transmittance. We demonstrate 24.7%-efficient single-junction GaAs solar cells using vacuum-free CFL grids. These devices are only 1.7% (absolute) less efficient than the baseline grids patterned by photolithography with the loss mostly resulting from the reduced transparency of the CFL pattern. Additional optimization could decrease this difference. Initial cost modeling suggests that CFL is more scalable than photolithography: In particular, CFL's lower materials and equipment costs could greatly reduce the levelized cost of electricity of III-V PV at scale, a potential step toward terrestrial deployment.

6.
ACS Appl Mater Interfaces ; 12(23): 25895-25902, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396321

RESUMEN

Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se2 cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.

7.
Langmuir ; 36(17): 4630-4636, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275439

RESUMEN

The fundamentals of using cracked film lithography (CFL) to fabricate metal grids for transparent contacts in solar cells were studied. The underlying physics of drying-induced cracks were well-predicted by an empirical correlation relating crack spacing to capillary pressure. CFL is primarily controlled by varying the crack template thickness, which establishes a three-way tradeoff between the areal density of cracks, crack width, and spacing between cracks, which in turn determine final grid transmittance, grid sheet resistance, and the semiconductor resistance for a given solar cell. Since CFL uses a lift-off process, an additional constraint is that the metal thickness must be less than 1/3 of the crack template thickness. The transmittance/grid sheet resistance/wire spacing tradeoffs measured in this work were used to calculate solar cell performance: CFL-patterned grids should outperform screen-printed grids for narrow cells (0.5-2 cm wide) and/or cells with high semiconductor sheet resistance (≥100 Ω/sq), making CFL attractive for monolithically integrated thin-film photovoltaic modules.

8.
ACS Appl Mater Interfaces ; 10(23): 19573-19579, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29767955

RESUMEN

Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV and decreased saturated photocurrent density from 18 to 8 mA/cm2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa3Se5) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (∼12 mA/cm2 at -1 V vs RHE). This is equivalent to ∼17 200 C/cm2, which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa3Se5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.

9.
Langmuir ; 26(6): 4357-67, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19957975

RESUMEN

Previously, the synthesis of highly oriented pure double-gyroid nanoporous silica films has been demonstrated using evaporation-induced self-assembly (EISA) and dip-coating with a specialty triblock surfactant (PEO-PPO-alkyl) as the template. For these films, grazing-incidence small-angle X-ray scattering (GISAXS) was used to determine orientation and structure. However, GISAXS is not widely available, and we have observed significant batch-to-batch variability in the PEO-PPO-alkyl surfactants used. Here, we show for the first time: (1) synthesis of highly oriented pure double-gyroid nanoporous silica films using freely available EO(19)-PO(43)-EO(19) surfactant (Pluronic-P84) as the nanostructure-directing agent, (2) the use of spin-coating and dip-coating EISA to fabricate the double-gyroid films, and (3) the use of theta-theta X-ray diffractometers (commonly available and typically used for powder X-ray diffraction, PXRD) to identify the double-gyroid phase. Processing diagrams for P84 using dip-coating and spin-coating are shown in order to map the dependency of the nanostructure on solution composition, relative humidity, and solution aging time. In addition, an effect of the rate of evaporation during EISA is observed via dependence on the angular velocity in spin-coating. Also, through quantitative comparison of the GISAXS patterns with corresponding PXRD patterns, previously unexplained diffraction peaks in the PXRD patterns are shown to result from diffraction from crystallographic planes that are not parallel to the substrate (typically not observed in PXRD) due to the small angles involved and the nonzero acceptance angle of the PXRD Soller slits. These peaks provide a means to distinctly identify the double-gyroid phase using PXRD. The same trends relating aging-time-before-coating to the phase that forms via EISA are observed with EO(19)-PO(43)-EO(19) as was the case in previous studies using EO(17)-PO(14)-C(12). This shows the generality of use of aging time to synthesize nanoporous silica films with nonionic surfactants. Finally, a list of "tips and tricks" is provided to facilitate easy reproducible synthesis of double-gyroid nanoporous silica thin films in other laboratories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...