Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 12: 670390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646296

RESUMEN

The genomes of crossbred (admixed) individuals are a mosaic of ancestral haplotypes formed by recombination in each generation. The proportion of these ancestral haplotypes in certain genomic regions can be responsible for either susceptibility or tolerance against pathogens, and for performances in production traits. Using a medium-density genomic marker panel from the Illumina Bovine SNP50 BeadChip, we estimated individual admixture proportions for Baoulé x Zebu crossbred cattle in Burkina Faso, which were tested for trypanosome infection by direct ELISA from blood samples. Furthermore, we calculated local ancestry deviation from average for each SNP across 29 autosomes to identify potential regions under selection in the trypanotolerant Baoulé cattle and their crossbreds. We identified significant deviation from the local average ancestry (above 5 and 10% genome-wide thresholds) on chromosomes 8 and 19 in the positive animals, while the negative ones showed higher deviation on chromosomes 6, 19, 21, and 22. Some candidate genes on chromosome 6 (PDGFRA) and chromosome 19 (CDC6) have been found associated to trypanotolerance in West African taurines. Screening for F ST outliers in trypanosome positive/negative animals we detected seven variants putatively under selection. Finally, we identified a minimum set of highly ancestry informative markers for routine admixture testing. The results of this study contribute to a better understanding of the genetic basis of trypanotolerance in Baoulé cattle and their crossbreeds. Furthermore, we provide a small informative marker set to monitor admixture in this valuable indigenous breed. As such, our results are important for conserving the genetic uniqueness and trypanotolerance of Baoulé cattle, as well as for the improvement of Baoulé and Zebu crossbreds in specific community-based breeding programs.

2.
PLoS One ; 16(8): e0255089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34351956

RESUMEN

In this study, single-SNP GWAS analyses were conducted to find regions affecting tolerance against trypanosomosis and morphometrics traits in purebred and crossbred Baoulé cattle of Burkina Faso. The trypanosomosis status (positive and negative) and a wide set of morphological traits were recorded for purebred Baoulé and crossbred Zebu x Baoulé cattle, and genotyped with the Illumina Bovine SNP50 BeadChip. After quality control, 36,203 SNPs and 619 animals including 343 purebred Baoulé and 279 crossbreds were used for the GWAS analyses. Several important genes were found that can influence morphological parameters. Although there were no genes identified with a reported strong connection to size traits, many of them were previously identified in various growth-related studies. A re-occurring theme for the genes residing in the regions identified by the most significant SNPs was pleiotropic effect on growth of the body and the cardiovascular system. Regarding trypanosomosis tolerance, two potentially important regions were identified in purebred Baoulé on chromosomes 16 and 24, containing the CFH, CRBN, TRNT1 and, IL5RA genes, and one additional genomic region in Baoulé, x Zebu crossbreds on chromosome 5, containing MGAT4C and NTS. Almost all of these regions and genes were previously related to the trait of interest, while the CRBN gene was to our knowledge presented in the context of trypanosomiasis tolerance for the first time.


Asunto(s)
Cruzamiento , Bovinos/anatomía & histología , Bovinos/parasitología , Estudio de Asociación del Genoma Completo , Trypanosoma/fisiología , Animales , Burkina Faso , Bovinos/genética , Cromosomas de los Mamíferos/genética , Polimorfismo de Nucleótido Simple/genética , Prevalencia
3.
J Anim Breed Genet ; 138(3): 379-388, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33609004

RESUMEN

High-throughput genomic markers provide an opportunity to assess important indicators of genetic diversity for populations managed in livestock breeding programs. While well-structured breeding programs are common in developed countries, in developing country situations, especially in West Africa, on-farm performance and pedigree recordings are rare, and thus, genomic markers provide insights to the levels of genetic diversity, inbreeding and introgression by other breeds. In this study, we analysed key population parameters such as population structure, admixture and levels of inbreeding in three neighbouring populations of African taurine and taurine × Zebu crosses managed by community-based breeding programs in the South-West of Burkina Faso. The three populations were pure Baoulé (called Lobi locally) in sedentary production systems, Baoulé x Zebu crossbreds in sedentary systems and Zebu × Baoulé crossbreds in transhumant production systems, respectively. The total sample analysed included 631 animals and 38,207 single nucleotide polymorphisms after quality control. Results of principal component and admixture analyses confirmed the genetic background of two distinct ancestral populations (taurine and zebuine) and levels of admixture in all three breeding populations, including the presumably pure Baoulé group of animals. Inbreeding levels were moderate, compared to European dairy and beef cattle populations and higher than those of Brazilian Nellore cattle. Very few animals with inbreeding levels indicating parent-offspring or full sib mating were observed, and inbreeding levels indicating half sib mating were also rare. For the management of breeding populations, farmers were advised to exchange best young bulls. The crossbreeding levels of presumably pure Baoulé animals are of concern to the breeding program due to the high level of endangerment of pure African taurine cattle populations across West Africa. Future rounds of bull selection in the community-based breeding program will make use of genomic information about admixture levels.


Asunto(s)
Endogamia , Animales , Brasil , Burkina Faso , Bovinos , Genoma , Ganado , Masculino
4.
Nat Genet ; 52(10): 1099-1110, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32989325

RESUMEN

Cattle pastoralism plays a central role in human livelihood in Africa. However, the genetic history of its success remains unknown. Here, through whole-genome sequence analysis of 172 indigenous African cattle from 16 breeds representative of the main cattle groups, we identify a major taurine × indicine cattle admixture event dated to circa 750-1,050 yr ago, which has shaped the genome of today's cattle in the Horn of Africa. We identify 16 loci linked to African environmental adaptations across crossbred animals showing an excess of taurine or indicine ancestry. These include immune-, heat-tolerance- and reproduction-related genes. Moreover, we identify one highly divergent locus in African taurine cattle, which is putatively linked to trypanotolerance and present in crossbred cattle living in trypanosomosis-infested areas. Our findings indicate that a combination of past taurine and recent indicine admixture-derived genetic resources is at the root of the present success of African pastoralism.


Asunto(s)
Adaptación Fisiológica/genética , Cruzamiento , Bovinos , Genoma , Secuenciación Completa del Genoma , África , Alelos , Animales , Bovinos/genética , Genotipo , Calor/efectos adversos , Mosaicismo , Polimorfismo de Nucleótido Simple , Reproducción/genética , Secuenciación Completa del Genoma/veterinaria
6.
Cell Res ; 30(8): 693-701, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32581344

RESUMEN

Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.


Asunto(s)
Pollos/genética , Genoma , Filogenia , Distribución Animal , Animales , Animales Domésticos/genética , Asia , Domesticación , Pool de Genes , Geografía , Funciones de Verosimilitud , Aves de Corral/genética , Selección Genética
7.
PLoS One ; 14(4): e0214843, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31002664

RESUMEN

Indigenous goats make significant contributions to Cameroon's national and local economy, but little effort has been devoted to identifying the populations. Here, we assessed the genetic diversity and demographic dynamics of Cameroon goat populations using mitochondrial DNA (two populations) and autosomal markers (four populations) generated with the Caprine 50K SNP chip. To infer genetic relationships at continental and global level, genotype data on six goat populations from Ethiopia and one population each from Egypt, Morocco, Iran, and China were included in the analysis. The mtDNA analysis revealed 83 haplotypes, all belonging to haplogroup A, in Cameroon goats. Four haplotypes were shared between goats found in Cameroon, Mozambique, Namibia, Zimbabwe, Kenya, and Ethiopia. Analysis of autosomal SNPs in Cameroon goats revealed the lowest HO (0.335±0.13) and HE (0.352±0.15) in the North-west Highland and Central Highland populations, respectively. Overall, the highest HO (0.401±0.12) and HE (0.422±0.12) were found for Barki and Iranian goats, respectively. Barki goats had the highest average MAF, while Central Highland Cameroon goats had the lowest. Overall, Cameroon goats demonstrated high FIS. AMOVA revealed that 13.29% of the variation was explained by genetic differences between the six population groups. Low average FST (0.01) suggests intermixing among Cameroon goats. All measures indicated that Cameroon goats are closer to Moroccan goats than to other goat populations. PCA and STRUCTURE analyses poorly differentiated the Cameroon goats, as did genetic distance, Neighbor-Net network, and neighbor-joining tree analyses. The haplotype analysis of mtDNA showed the initial dispersion of goats to Cameroon and central Africa from north-east Africa following the Nile Delta. Whereas, the approximate Bayesian computation indicated Cameroon goats were separated from Moroccan goats after 506 generations in later times (~1518 YA), as supported by the phylogenetic net-work and admixture outputs. Overall, indigenous goats in Cameroon show weak phylogenetic structure, suggesting either extensive intermixing.


Asunto(s)
Cabras/genética , África Oriental , África del Norte , Animales , Asia , Teorema de Bayes , Camerún , Simulación por Computador , ADN Mitocondrial/genética , Variación Genética , Genética de Población , Cabras/clasificación , Haplotipos , Filogenia , Polimorfismo de Nucleótido Simple
8.
Ecol Evol ; 8(3): 1543-1553, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29435231

RESUMEN

The Horn of Africa forms one of the two main historical entry points of domestics into the continent and Ethiopia is particularly important in this regard. Through the analysis of mitochondrial DNA (mtDNA) d-loop region in 309 individuals from 13 populations, we reveal the maternal genetic variation and demographic dynamics of Ethiopian indigenous goats. A total of 174 variable sites that generated 231 haplotypes were observed. They defined two haplogroups that were present in all the 13 study populations. Reference haplotypes from the six globally defined goat mtDNA haplogroups show the two haplogroups present in Ethiopia to be A and G, the former being the most predominant. Although both haplogroups are characterized by an increase in effective population sizes (Ne) predating domestication, they also have experienced a decline in Ne at different time periods, suggesting different demographic histories. We observed seven haplotypes, six were directly linked to the central haplotypes of the two haplogroups and one was central to haplogroup G. The seven haplotypes were common between Ethiopia, Kenya, Egypt, and Saudi Arabia populations, suggesting common maternal history and the introduction of goats into East Africa via Egypt and the Arabian Peninsula, respectively. While providing new mtDNA data from a historically important region, our results suggest extensive intermixing of goats mediated by human socio-cultural and economic interactions. These have led to the coexistence of the two haplogroups in different geographic regions in Ethiopia resulting in a large caprine genetic diversity that can be exploited for genetic improvement.

9.
Mamm Genome ; 28(11-12): 528-541, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28905131

RESUMEN

Since domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N'Dama cattle breeds using Tajima's D, XP-CLR, and XP-EHH population statistical methods. The whole genomes of 10 Holstein (South Korea), 11 Hanwoo (South Korea), and 10 N'Dama (West Africa-Guinea) cattle breeds re-sequenced to ~11x coverage and retained 37 million SNPs were used for the study. Selection signature analysis revealed 441, 512, and 461 genes under selection from Holstein, Hanwoo, and N'Dama cattle breeds, respectively. Among all these, seven genes including ARFGAP3, SNORA70, and other RNA genes were common between the breeds. From each of the gene lists, significant functional annotation cluster terms including milk protein and thyroid hormone signaling pathway (Holstein), histone acetyltransferase activity (Hanwoo), and renin secretion (N'Dama) were enriched. Genes that are related to the phenotypes of the respective breeds were also identified. Moreover, significant breed-specific missense variants were identified in CSN3, PAPPA2 (Holstein), C1orf116 (Hanwoo), and COMMD1 (N'Dama) genes. The genes identified from this study provide an insight into the biological mechanisms and pathways that are important in cattle breeds selected for different traits of economic significance.


Asunto(s)
Selección Genética/genética , Animales , Cruzamiento/métodos , Bovinos , Genoma/genética , Genómica/métodos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , República de Corea , Transducción de Señal/genética
10.
Anim Sci J ; 88(12): 1889-1901, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28748670

RESUMEN

As African indigenous cattle evolved in a hot tropical climate, they have developed an inherent thermotolerance; survival mechanisms include a light-colored and shiny coat, increased sweating, and cellular and molecular mechanisms to cope with high environmental temperature. Here, we report the positive selection signature of genes in African cattle breeds which contribute for their heat tolerance mechanisms. We compared the genomes of five indigenous African cattle breeds with the genomes of four commercial cattle breeds using cross-population composite likelihood ratio (XP-CLR) and cross-population extended haplotype homozygosity (XP-EHH) statistical methods. We identified 296 (XP-EHH) and 327 (XP-CLR) positively selected genes. Gene ontology analysis resulted in 41 biological process terms and six Kyoto Encyclopedia of Genes and Genomes pathways. Several genes and pathways were found to be involved in oxidative stress response, osmotic stress response, heat shock response, hair and skin properties, sweat gland development and sweating, feed intake and metabolism, and reproduction functions. The genes and pathways identified directly or indirectly contribute to the superior heat tolerance mechanisms in African cattle populations. The result will improve our understanding of the biological mechanisms of heat tolerance in African cattle breeds and opens an avenue for further study.


Asunto(s)
Bovinos/genética , Bovinos/fisiología , Estudios de Asociación Genética/veterinaria , Genoma/genética , Selección Genética/genética , Termotolerancia/genética , Animales , Ingestión de Alimentos/genética , Ontología de Genes , Color del Cabello/genética , Haplotipos/genética , Respuesta al Choque Térmico/genética , Homocigoto , Calor , Presión Osmótica , Estrés Oxidativo/genética , Glándulas Sudoríparas , Sudoración/genética
11.
BMC Genomics ; 18(1): 371, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28499406

RESUMEN

BACKGROUND: Indigenous cattle in Africa have adapted to various local environments to acquire superior phenotypes that enhance their survival under harsh conditions. While many studies investigated the adaptation of overall African cattle, genetic characteristics of each breed have been poorly studied. RESULTS: We performed the comparative genome-wide analysis to assess evidence for subspeciation within species at the genetic level in trypanotolerant N'Dama cattle. We analysed genetic variation patterns in N'Dama from the genomes of 101 cattle breeds including 48 samples of five indigenous African cattle breeds and 53 samples of various commercial breeds. Analysis of SNP variances between cattle breeds using wMI, XP-CLR, and XP-EHH detected genes containing N'Dama-specific genetic variants and their potential associations. Functional annotation analysis revealed that these genes are associated with ossification, neurological and immune system. Particularly, the genes involved in bone formation indicate that local adaptation of N'Dama may engage in skeletal growth as well as immune systems. CONCLUSIONS: Our results imply that N'Dama might have acquired distinct genotypes associated with growth and regulation of regional diseases including trypanosomiasis. Moreover, this study offers significant insights into identifying genetic signatures for natural and artificial selection of diverse African cattle breeds.


Asunto(s)
Bovinos/genética , Bovinos/parasitología , Genómica , Polimorfismo de Nucleótido Simple , Trypanosoma/fisiología , Animales , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/parasitología , Codón sin Sentido , Resistencia a la Enfermedad/genética , Mutación Missense , Especificidad de la Especie
12.
Genome Biol ; 18(1): 34, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28219390

RESUMEN

BACKGROUND: The history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems. RESULTS: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/or pathways controlling anemia and feeding behavior in the trypanotolerant N'Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds. CONCLUSIONS: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.


Asunto(s)
Variación Genética , Genoma , Genómica , Adaptación Biológica , Animales , Bovinos , Ambiente , Evolución Molecular , Interacción Gen-Ambiente , Genética de Población , Genómica/métodos , Geografía , Humanos , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Estrés Fisiológico
13.
BMC Genet ; 18(1): 11, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28183280

RESUMEN

BACKGROUND: Africa is home to numerous cattle breeds whose diversity has been shaped by subtle combinations of human and natural selection. African Sanga cattle are an intermediate type of cattle resulting from interbreeding between Bos taurus and Bos indicus subspecies. Recently, research has asserted the potential of Sanga breeds for commercial beef production with better meat quality as compared to Bos indicus breeds. Here, we identified meat quality related gene regions that are positively selected in Ankole (Sanga) cattle breeds as compared to indicus (Boran, Ogaden, and Kenana) breeds using cross-population (XP-EHH and XP-CLR) statistical methods. RESULTS: We identified 238 (XP-EHH) and 213 (XP-CLR) positively selected genes, of which 97 were detected from both statistics. Among the genes obtained, we primarily reported those involved in different biological process and pathways associated with meat quality traits. Genes (CAPZB, COL9A2, PDGFRA, MAP3K5, ZNF410, and PKM2) involved in muscle structure and metabolism affect meat tenderness. Genes (PLA2G2A, PARK2, ZNF410, MAP2K3, PLCD3, PLCD1, and ROCK1) related to intramuscular fat (IMF) are involved in adipose metabolism and adipogenesis. MB and SLC48A1 affect meat color. In addition, we identified genes (TIMP2, PKM2, PRKG1, MAP3K5, and ATP8A1) related to feeding efficiency. Among the enriched Gene Ontology Biological Process (GO BP) terms, actin cytoskeleton organization, actin filament-based process, and protein ubiquitination are associated with meat tenderness whereas cellular component organization, negative regulation of actin filament depolymerization and negative regulation of protein complex disassembly are involved in adipocyte regulation. The MAPK pathway is responsible for cell proliferation and plays an important role in hyperplastic growth, which has a positive effect on meat tenderness. CONCLUSION: Results revealed several candidate genes positively selected in Ankole cattle in relation to meat quality characteristics. The genes identified are involved in muscle structure and metabolism, and adipose metabolism and adipogenesis. These genes help in the understanding of the biological mechanisms controlling beef quality characteristics in African Ankole cattle. These results provide a basis for further research on the genomic characteristics of Ankole and other Sanga cattle breeds for quality beef.


Asunto(s)
Cruzamiento , Bovinos/genética , Calidad de los Alimentos , Genómica , Carne Roja , Animales , Filogenia , Pigmentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...