Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vet Med Sci ; 85(6): 680-690, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37150611

RESUMEN

Pentosan polysulfate sodium (PPS) is a heparin-like polysaccharide that is applied as a therapeutic treatment for osteoarthritis (OA) in animals. This study investigated the efficacy of different molecular weights PPS (1,500-7,000 Da) on the phenotype regulatory and chondrogenic properties of canine articular chondrocytes. The cytotoxicity of PPS on chondrocytes was assessed using flow cytometry and 3-(4,5-dimehylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. After 72 hr of exposure, PPS did not induce chondrocyte apoptosis, regardless of molecular weight. In addition, chondrogenic properties were determined according to the mRNA and protein levels in micromass-cultured chondrocytes. Quantitative polymerase chain reaction analysis confirmed that PPS promotes a chondrogenic phenotype in chondrocytes in a molecular weight-dependent manner, with significant upregulation of collagen type II alpha 1 chain, aggrecan, and SRY-box transcription factor 9 (SOX9) mRNA levels relative to those in the control. However, the collagen type I alpha 2 chain mRNA level simultaneously increased after 7,000 Da PPS treatment. PPS exposure also increased collagen type II and SOX9 protein production in a molecular weight-dependent manner and inhibited Akt phosphorylation in chondrocytes. Alcian blue staining indicated that PPS treatment enhanced proteoglycan deposition in micromass cultures, with stronger effects observed in 5,000 and 7,000 Da groups. Overall, these results indicate that PPS exerts protective effects on the chondrocyte phenotype and may represent a potential therapeutic target for OA treatment. Increasing the molecular weight of PPS could enhance these anabolic effects.


Asunto(s)
Cartílago Articular , Enfermedades de los Perros , Osteoartritis , Animales , Perros , Condrocitos/metabolismo , Poliéster Pentosan Sulfúrico/farmacología , Peso Molecular , Colágeno Tipo II/metabolismo , Fenotipo , Osteoartritis/tratamiento farmacológico , Osteoartritis/veterinaria , Células Cultivadas , ARN Mensajero/metabolismo , Diferenciación Celular , Factor de Transcripción SOX9/metabolismo , Enfermedades de los Perros/metabolismo
2.
J Vet Med Sci ; 85(4): 515-522, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36889691

RESUMEN

Bupivacaine, levobupivacaine and ropivacaine are potent, long acting, amide-type local anesthetics that have several clinical applications including intra-articular administration. The objectives of this study were to evaluate their in vitro effects on cell viability and caspase activity to elucidate whether they activate the extrinsic or intrinsic pathways of apoptosis in canine articular chondrocytes. Chondrocytes in monolayer culture were treated with culture medium as the control, or with 0.062% (0.62 mg/mL) bupivacaine, 0.062% levobupivacaine, and 0.062% ropivacaine for 24 hr. Cell viability was evaluated using the live/dead, 3-(4,5-dimehylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT), and Cell Counting Kit-8 (CCK-8) assays. Evaluation of caspase-3, caspase-8, and caspase-9 activity was performed using colorimetric assays. The MTT and CCK-8 assays were used to evaluate the effect of caspase inhibitors on local anesthetic chondrotoxicity. All three local anesthetics decreased chondrocyte viability after 24 hr (P<0.001). Apoptosis was induced through both the extrinsic and intrinsic pathways. Bupivacaine increased caspase-3, caspase-8, and caspase-9 activity (P<0.001). Levobupivacaine increased caspase-3 (P=0.03) while ropivacaine did not significantly upregulate activity for all three caspases. Caspase inhibition did not suppress bupivacaine chondrotoxicity whereas inhibition of caspase-8 and caspase-9 decreased ropivacaine chondrotoxicity and mildly attenuated levobupivacaine chondrotoxicity. In summary, the level of chondrotoxicity, the type of caspase activated, the level of caspase activation, and the response to caspase inhibitors was dependent on the type of local anesthetic. Therefore, ropivacaine may be a safer choice for intra-articular administration compared to levobupivacaine and bupivacaine.


Asunto(s)
Anestésicos Locales , Bupivacaína , Animales , Perros , Ropivacaína/toxicidad , Condrocitos , Levobupivacaína/farmacología , Caspasa 3 , Caspasa 9/farmacología , Caspasa 8 , Inhibidores de Caspasas/farmacología , Caspasas
3.
J Vet Med Sci ; 84(10): 1437-1441, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36047165

RESUMEN

The aim of this study was to investigate the anti-hepcidin effect of pentosan polysulfate (PPS) in Mongolian horses. Twenty-six healthy horses were randomly allocated in to two-groups; one group was treated with a PPS once a week for 4-weeks while another group keeping as placebo. Blood samples at day 0 (D0), before race (BR; day 28) and after race (AR; day 28) were analyzed for serum biochemistry, hepcidin and iron concentrations. Significant reduction of hepcidin was observed at AR in PPS group when compared with BR placebo (P<0.05) and AR placebo (P<0.01). Mean hepcidin concentration difference of D0-BR and BR-AR in PPS was greater than the placebo whereas the iron concentration difference is reduced compared to placebo. Results indicate a novel therapeutic application of PPS as an anti-hepcidin compound to control hepcidin in horses while emphasizing further molecular studies.


Asunto(s)
Hierro , Poliéster Pentosan Sulfúrico , Animales , Caballos , Poliéster Pentosan Sulfúrico/farmacología
4.
PLoS One ; 17(3): e0265596, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299233

RESUMEN

Hepcidin which is the crucial regulator of iron homeostasis, produced in the liver in response to anemia, hypoxia, or inflammation. Recent studies have suggested that hepcidin and iron metabolism are involved in osteoporosis by inhibiting osteoblast function and promoting osteoclastogenesis. Pentosan polysulfate (PPS) is a heparin analogue and promising novel therapeutic for osteoarthritis (OA). This study was undertaken to determine whether PPS inhibits hepcidin-facilitated osteoclast (OC) differentiation and iron overload. Canine (n = 3) bone marrow mononuclear cells were differentiated to OC by macrophage colony-stimulating factor and receptor-activator of nuclear factor kappaB ligand with the treatment of hepcidin1 (200, 400, 800, 1200 nmol/L) and PPS (1, 5, 10, 20, 40 µg/mL). Differentiation and function of OC were accessed using tartrate-resistant acid phosphate staining and bone resorption assay while monitoring ferroportin1 (FPN1) and iron concentration by immunocytochemistry. Gene expression of OC for cathepsin K (CTK), matrix metallopeptidase-9, nuclear factor of activated-T-cells cytoplasmic 1 and FPN1 was examined. Hepcidin1 showed significant enhancement of OC number at 800 nmol/L (p<0.01). PPS impeded hepcidin-facilitated OC at 1, 5 and 10 µg/mL and reduction of resorption pits at 5 and 10 µg/mL (p< 0.01). All OC specific genes were downregulated with PPS, specifically in significant manner with CTK at higher concentrations. However, heparin induced FPN1 internalization and degradation was inhibited at higher concentrations of PPS while restoring iron-releasing capability of OC. We demonstrate for the first time that PPS is a novel-inhibitor of hepcidin-facilitated OC formation/function which might be beneficial for treatment of OA and osteoporosis.


Asunto(s)
Resorción Ósea , Osteoartritis , Osteoporosis , Animales , Médula Ósea/metabolismo , Resorción Ósea/metabolismo , Diferenciación Celular , Perros , Heparina/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Osteoartritis/metabolismo , Osteoclastos/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Poliéster Pentosan Sulfúrico/farmacología , Ligando RANK/metabolismo , Ligando RANK/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA