Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Viruses ; 15(6)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37376669

RESUMEN

Bats are of significant interest as reservoirs for various zoonotic viruses with high diversity. During the past two decades, many herpesviruses have been identified in various bats worldwide by genetic approaches, whereas there have been few reports on the isolation of infectious herpesviruses. Herein, we report the prevalence of herpesvirus infection of bats captured in Zambia and genetic characterization of novel gammaherpesviruses isolated from striped leaf-nosed bats (Macronycteris vittatus). By our PCR screening, herpesvirus DNA polymerase (DPOL) genes were detected in 29.2% (7/24) of Egyptian fruit bats (Rousettus aegyptiacus), 78.1% (82/105) of Macronycteris vittatus, and one Sundevall's roundleaf bat (Hipposideros caffer) in Zambia. Phylogenetic analyses of the detected partial DPOL genes revealed that the Zambian bat herpesviruses were divided into seven betaherpesvirus groups and five gammaherpesvirus groups. Two infectious strains of a novel gammaherpesvirus, tentatively named Macronycteris gammaherpesvirus 1 (MaGHV1), were successfully isolated from Macronycteris vittatus bats, and their complete genomes were sequenced. The genome of MaGHV1 encoded 79 open reading frames, and phylogenic analyses of the DNA polymerase and glycoprotein B demonstrated that MaGHV1 formed an independent lineage sharing a common origin with other bat-derived gammaherpesviruses. Our findings provide new information regarding the genetic diversity of herpesviruses maintained in African bats.


Asunto(s)
Quirópteros , Gammaherpesvirinae , Herpesviridae , Animales , Filogenia , Zambia/epidemiología , Herpesviridae/genética
2.
Transbound Emerg Dis ; 69(4): e931-e943, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34724353

RESUMEN

Influenza A viruses (IAVs) cause highly contagious respiratory diseases in humans and animals. In 2009, a swine-origin pandemic H1N1 IAV, designated A(H1N1)pdm09 virus, spread worldwide, and has since frequently been introduced into pig populations. Since novel reassortant IAVs with pandemic potential may emerge in pigs, surveillance for IAV in pigs is therefore necessary not only for the pig industry but also for public health. However, epidemiological information on IAV infection of pigs in Africa remains sparse. In this study, we collected 246 serum and 605 nasal swab samples from pigs in Zambia during the years 2011-2018. Serological analyses revealed that 49% and 32% of the sera collected in 2011 were positive for hemagglutination-inhibition (HI) and neutralizing antibodies against A(H1N1)pdm09 virus, respectively, whereas less than 5.3% of sera collected during the following period (2012-2018) were positive in both serological tests. The positive rate and the neutralization titres to A(H1N1)pdm09 virus were higher than those to classical swine H1N1 and H1N2 IAVs. On the other hand, the positive rate for swine H3N2 IAV was very low in the pig population in Zambia in 2011-2018 (5.3% and 0% in HI and neutralization tests, respectively). From nasal swab samples, we isolated one H3N2 and eight H1N1 IAV strains with an isolation rate of 1.5%. Phylogenetic analyses of all eight gene segments revealed that the isolated IAVs were closely related to human IAV strains belonging to A(H1N1)pdm09 and seasonal H3N2 lineages. Our findings indicate that reverse zoonotic transmission from humans to pigs occurred during the study period in Zambia and highlight the need for continued surveillance to monitor the status of IAVs circulating in swine populations in Africa.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Filogenia , Porcinos , Zambia/epidemiología
3.
Pathogens ; 10(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208340

RESUMEN

Rabies remains endemic in Zambia. Despite conducting canine vaccinations in Lusaka district, the vaccination coverage and actual seropositivity in the dog population in Lusaka district are rarely evaluated. This study estimated the seropositivity-based immunization coverage in the owned dog population in Lusaka district using the expanded program on immunization cluster survey method. The time-series trend of neutralizing antibodies against rabies in vaccinated dogs was also evaluated. Of 366 dogs in 200 dog-owning households in Lusaka district, blood samples were collected successfully from 251 dogs. In the sampled dogs, 42.2% (106/251) had an antibody titer ≥0.5 IU/mL. When the 115 dogs whose blood was not collected were assumed to be seronegative, the minimum immunization coverage in Lusaka district's owned dog population was estimated at 29.0% (95% confidence interval: 22.4-35.5). It was also found that a single vaccination with certified vaccines is capable of inducing protective levels of antibodies. In contrast, higher antibody titers were observed in multiple-vaccinated dogs than in single-vaccinated dogs, coupled with the observation of a decline in antibody titer over time. These results suggest the importance of continuous booster immunization to maintain herd immunity and provide useful information to plan mass vaccination against rabies in Zambia.

4.
PLoS Negl Trop Dis ; 15(6): e0009452, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061841

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonosis with a high case fatality rate in humans. Although the disease is widely found in Africa, Europe, and Asia, the distribution and genetic diversity of CCHF virus (CCHFV) are poorly understood in African countries. To assess the risks of CCHF in Zambia, where CCHF has never been reported, epidemiologic studies in cattle and ticks were conducted. Through an indirect immunofluorescence assay, CCHFV nucleoprotein-specific serum IgG was detected in 8.4% (88/1,047) of cattle. Among 290 Hyalomma ticks, the principal vector of CCHFV, the viral genome was detected in 11 ticks. Phylogenetic analyses of the CCHFV S and M genome segments revealed that one of the detected viruses was a genetic reassortant between African and Asian strains. This study provides compelling evidence for the presence of CCHFV in Zambia and its transmission to vertebrate hosts.


Asunto(s)
Enfermedades de los Bovinos/parasitología , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Fiebre Hemorrágica de Crimea/veterinaria , Garrapatas/virología , Animales , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/epidemiología , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/sangre , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/virología , Humanos , Inmunoglobulina G/sangre , Filogenia , Pruebas Serológicas , Zambia/epidemiología
5.
PLoS Negl Trop Dis ; 15(4): e0009222, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33909621

RESUMEN

BACKGROUND: An estimated 75% or more of the human rabies cases in Africa occur in rural settings, which underscores the importance of rabies control in these areas. Understanding dog demographics can help design strategies for rabies control and plan and conduct canine mass vaccination campaigns effectively in African countries. METHODOLOGY/PRINCIPAL FINDINGS: A cross-sectional survey was conducted to investigate domestic dog demographics in Kalambabakali, in the rural Mazabuka District of Zambia. The population of ownerless dogs and the total achievable vaccination coverage among the total dog population was estimated using the capture-recapture-based Bayesian model by conducting a canine mass vaccination campaign. This study revealed that 29% of the domestic dog population was under one year old, and 57.7% of those were under three months old and thus were not eligible for the canine rabies vaccination in Zambia. The population growth was estimated at 15% per annum based on the cross-sectional household survey. The population of ownerless dogs was estimated to be small, with an ownerless-to-owned-dog ratio of 0.01-0.06 in the target zones. The achieved overall vaccination coverage from the first mass vaccination was estimated 19.8-51.6%. This low coverage was principally attributed to the owners' lack of information, unavailability, and dog-handling difficulties. The follow-up mass vaccination campaign achieved an overall coverage of 54.8-76.2%. CONCLUSIONS/SIGNIFICANCE: This paper indicates the potential for controlling canine rabies through mass vaccination in rural Zambia. Rabies education and responsible dog ownership are required to achieve high and sustainable vaccination coverage. Our findings also propose including puppies below three months old in the target population for rabies vaccination and emphasize that securing an annual enforcement of canine mass vaccination that reaches 70% coverage in the dog population is necessary to maintain protective herd immunity.


Asunto(s)
Enfermedades de los Perros/prevención & control , Vacunas Antirrábicas/inmunología , Rabia/veterinaria , Cobertura de Vacunación/estadística & datos numéricos , Animales , Teorema de Bayes , Estudios Transversales , Perros , Femenino , Masculino , Vacunación Masiva/veterinaria , Propiedad , Rabia/prevención & control , Vacunas Antirrábicas/administración & dosificación , Población Rural , Zambia
6.
J Gen Virol ; 101(10): 1027-1036, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32706330

RESUMEN

Mammalian orthoreovirus (MRV) has been identified in humans, livestock and wild animals; this wide host range allows individual MRV to transmit into multiple species. Although several interspecies transmission and genetic reassortment events of MRVs among humans, livestock and wildlife have been reported, the genetic diversity and geographic distribution of MRVs in Africa are poorly understood. In this study, we report the first isolation and characterization of MRVs circulating in a pig population in Zambia. In our screening, MRV genomes were detected in 19.7 % (29/147) of faecal samples collected from pigs by reverse transcription PCR. Three infectious MRV strains (MRV-85, MRV-96 and MRV-117) were successfully isolated, and their complete genomes were sequenced. Recombination analyses based on the complete genome sequences of the isolated MRVs demonstrated that MRV-96 shared the S3 segment with a different MRV isolated from bats, and that the L1 and M3 segments of MRV-117 originated from bat and human MRVs, respectively. Our results suggest that the isolated MRVs emerged through genetic reassortment events with interspecies transmission. Given the lack of information regarding MRVs in Africa, further surveillance of MRVs circulating among humans, domestic animals and wildlife is required to assess potential risk for humans and animals.


Asunto(s)
Heces/virología , Orthoreovirus de los Mamíferos/genética , Orthoreovirus de los Mamíferos/aislamiento & purificación , Infecciones por Reoviridae/veterinaria , Enfermedades de los Porcinos/virología , Porcinos/virología , Animales , Animales Salvajes/clasificación , Animales Salvajes/virología , Quirópteros/virología , Genoma Viral , Especificidad del Huésped , Filogenia , Prevalencia , Virus Reordenados/genética , Recombinación Genética , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/virología , Enfermedades de los Porcinos/epidemiología , Proteínas Virales/genética , Secuenciación Completa del Genoma , Zambia/epidemiología
7.
Pathogens ; 9(6)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545824

RESUMEN

Bat-associated bartonellae, including Bartonella mayotimonensis and Candidatus Bartonella rousetti, were recently identified as emerging and potential zoonotic agents, respectively. However, there is no report of bat-associated bartonellae in Zambia. Thus, we aimed to isolate and characterize Bartonella spp. from bats and bat flies captured in Zambia by culturing and PCR. Overall, Bartonella spp. were isolated from six out of 36 bats (16.7%), while Bartonella DNA was detected in nine out of 19 bat flies (47.3%). Subsequent characterization using a sequence of five different genes revealed that three isolates obtained from Egyptian fruit bats (Rousettus aegyptiacus) were Ca. B. rousetti. The isolates obtained from insectivorous bats (Macronycteris vittatus) were divided into two previously unclassified bat-associated bartonellae. A phylogenetic analysis of the six genotypes of Bartonella gltA sequences from nine pathogen-positive bat flies revealed that three genotypes belonged to the same clades as bat-associated bartonellae, including Ca. B. rousetti. The other three genotypes represented arthropod-associated bartonellae, which have previously been isolated only from ectoparasites. We demonstrated that Ca. B. rousetti is maintained between bats (R. aegyptiacus) and bat flies in Zambia. Continuous surveillance of Bartonella spp. in bats and serological surveys in humans in Africa are warranted to evaluate the public health importance of bat-associated bartonellae.

8.
Food Waterborne Parasitol ; 19: e00072, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32258446

RESUMEN

Giardia duodenalis is one of the most common causes of diarrhea in humans with about 250-300 million cases per year. It is considered to be a species complex comprising of eight genetic assemblages (A to H), with assemblages A and B being the major causes of human infections. In this study we carried out genotypic characterization of G. duodenalis isolates detected in asymptomatic school-going children aged 3-16 years. Between May and September 2017, a total of 329 fecal samples were collected from school-going children from Chawama compound of Lusaka City and were screened for Giardia by microscopic examination. All microscopically positive fecal samples were analyzed by semi-nested polymerase chain reaction (PCR) targeting the glutamate dehydrogenase (gdh) gene. Genotyping of amplified PCR products was conducted by restriction fragment length polymorphism (RFLP) and DNA sequence analysis. Microscopically, Giardia was found in 10% (33/329) of fecal samples. The PCR-RFLP analysis of the gdh gene revealed assemblages A and B in 27.3% (9/33) and 72.7% (24/33), respectively. Furthermore, analysis with restriction enzymes identified sub-assemblages AII (27.3%, 9/33), BIII (12.1%, 4/33), BIV (51.5%, 17/33) and mixed infections of BIII and BIV (9.1%, 3/33). Phylogenetic analysis showed the clustering of 27.6% (8/29) and 72.4% (21/29) of Zambian Giardia gdh gene sequences into assemblages A and B, respectively. This study has revealed the presence of both assemblage A and B and that spread of G. duodenalis in school-going children appears to be mostly through anthroponotic transmission. To our knowledge, this is the first report of genotypic characterization of G. duodenalis identified in Zambia.

9.
Viruses ; 12(2)2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033383

RESUMEN

Porcine sapelovirus (PSV) has been detected worldwide in pig populations. Although PSV causes various symptoms such as encephalomyelitis, diarrhea, and pneumonia in pigs, the economic impact of PSV infection remains to be determined. However, information on the distribution and genetic diversity of PSV is quite limited, particularly in Africa. In this study, we investigated the prevalence of PSV infection in Zambia and characterized the isolated PSVs genetically and biologically. We screened 147 fecal samples collected in 2018 and found that the prevalences of PSV infection in suckling pigs and fattening pigs were high (36.2% and 94.0%, respectively). Phylogenetic analyses revealed that the Zambian PSVs were divided into three different lineages (Lineages 1-3) in the clade consisting of Chinese strains. The Zambian PSVs belonging to Lineages 2 and 3 replicated more efficiently than those belonging to Lineage 1 in Vero E6 and BHK cells. Bioinformatic analyses revealed that genetic recombination events had occurred and the recombination breakpoints were located in the L and 2A genes. Our results indicated that at least two biologically distinct PSVs could be circulating in the Zambian pig population and that genetic recombination played a role in the evolution of PSVs.


Asunto(s)
Biodiversidad , Variación Genética , Infecciones por Picornaviridae/veterinaria , Picornaviridae/clasificación , Picornaviridae/genética , Enfermedades de los Porcinos/virología , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Diarrea/veterinaria , Diarrea/virología , Granjas , Heces/virología , Genoma Viral , Filogenia , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/virología , Prevalencia , Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Células Vero , Zambia/epidemiología
10.
J Vet Med Sci ; 82(2): 162-167, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-31866632

RESUMEN

Orthoreoviruses have been indentified in several mammals, however, there is no information about orthoreoviruses in shrews. In this study, we screened wild animals in Zambia, including shrews, rodents, and bats for the detection of orthoreoviruses. Two orthoreovirus RNA genomes were detected from a shrew intestinal-contents (1/24) and a bat colon (1/96) sample by reverse-transcription (RT)-PCR targeting the RNA-dependent RNA polymerase gene of orthoreoviruses. Phylogenetic analyses revealed that each of the identified orthoreoviruses formed a distinct branch among members of the Orthoreovirus genus. This is the first report that shrews are susceptible to orthoreovirus infection. Our results suggest the existence of undiscovered orthoreoviruses in shrews and provide important information about the genetic diversity of orthoreoviruses.


Asunto(s)
Quirópteros/virología , Orthoreovirus/clasificación , Orthoreovirus/genética , Musarañas/virología , Animales , ARN Polimerasas Dirigidas por ADN/genética , Genoma Viral , Filogenia , ARN Viral/aislamiento & purificación , Infecciones por Reoviridae/epidemiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Zambia/epidemiología
11.
Arch Virol ; 164(10): 2531-2536, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31300890

RESUMEN

Whilst bovine leukemia virus (BLV) causes considerable economic losses to the dairy industry worldwide, information on its molecular epidemiology and economic impact in beef cattle is limited. Here, blood from 880 animals from Zambia's major cattle-rearing provinces was screened for BLV by nested PCR. Positive pools were sequenced and phylogenetically analyzed. The estimated pooled prevalence was 2.1%. All strains belonged to genotype 1 and formed a distinct phylogenetic cluster. The study suggests circulation of genotype 1 BLV in beef cattle in these regions. This is the first report on molecular detection and characterization of BLV from beef cattle in Africa.


Asunto(s)
Leucosis Bovina Enzoótica/epidemiología , Leucosis Bovina Enzoótica/virología , Genotipo , Virus de la Leucemia Bovina/genética , Virus de la Leucemia Bovina/aislamiento & purificación , Animales , Bovinos , Virus de la Leucemia Bovina/clasificación , Epidemiología Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Prevalencia , Análisis de Secuencia de ADN , Zambia/epidemiología
12.
Viruses ; 11(7)2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261668

RESUMEN

The recent large outbreaks of Ebola virus disease (EVD) in West Africa and the Democratic Republic of the Congo (DRC) have highlighted the need for rapid diagnostic tests to control this disease. In this study, we clinically evaluated a previously developed immunochromatography-based kit, QuickNaviTM-Ebola. During the 2018 outbreaks in DRC, 928 blood samples from EVD-suspected cases were tested with QuickNaviTM-Ebola and the WHO-approved GeneXpert. The sensitivity and specificity of QuickNaviTM-Ebola, estimated by comparing it to GeneXpert-confirmed cases, were 85% (68/80) and 99.8% (846/848), respectively. These results indicate the practical reliability of QuickNaviTM-Ebola for point-of-care diagnosis of EVD.


Asunto(s)
Cromatografía de Afinidad/métodos , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , República Democrática del Congo/epidemiología , Brotes de Enfermedades , Ebolavirus/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Juego de Reactivos para Diagnóstico , Sensibilidad y Especificidad
13.
Virus Genes ; 55(5): 713-719, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31267444

RESUMEN

Rabies is endemic in Zambia and Zimbabwe. The previously investigated strains of rabies virus in central Zambia belong to the Africa 1b lineage, with similar circulating virus strains found in the various tested hosts and regions. However, prior work assessed only limited regions and host species. Thus, this study aimed to more comprehensively determine the genetic diversity of rabies virus across regions of Zambia and Zimbabwe. RNA (n = 76) was extracted from positive direct fluorescent antibody test brain tissues from dog, cow, goat, cat, pig, human, and jackal collected from Zambia and Zimbabwe. The amplicons of the nucleoprotein and glycoprotein genes were obtained from all examined samples by nested RT-PCR and subsequently sequenced. A phylogenetic analysis of the N gene confirmed that all the endemic strains of rabies virus in Zambia and Zimbabwe belong to the Africa 1b lineage. The obtained viral gene sequences were phylogenetically divided into two clusters. Cluster II comprised only Zambian strains. In contrast, cluster I comprised both Zambia and Zimbabwe strains, with strains from Zimbabwe forming a distinct lineage from Zambian strains, implying viral genetic divergence due to geographical barriers. However, no evidence of clustering based on host or region was observed, implying the circulation of similar virus strains occurs in different hosts and regions of Zambia and Zimbabwe. The clustering of rabies virus strains from jackals with those from domestic animals provides evidence of similar virus strains circulating in both wildlife and domestic animals, and that the jackal might be one of the potential reservoirs of rabies virus infection. In this study, no strains circulating in Zimbabwe were detected in Zambia.


Asunto(s)
Variación Genética , Filogeografía , Virus de la Rabia/clasificación , Virus de la Rabia/genética , Rabia/virología , Animales , Humanos , Reacción en Cadena de la Polimerasa , Rabia/veterinaria , Virus de la Rabia/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Proteínas Estructurales Virales/genética , Zambia , Zimbabwe
14.
Sci Rep ; 9(1): 8502, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171799

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

15.
Arch Virol ; 164(8): 2165-2170, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31154511

RESUMEN

Zika virus (ZIKV) circulation occurs between non-human primates (NHPs) in a sylvatic transmission cycle. To investigate evidence of flavivirus infection in NHPs in Zambia, we performed a plaque reduction neutralization test (PRNT) to quantify neutralizing antibodies. PRNT revealed that sera from NHPs (African green monkeys and baboons) exhibited neutralizing activity against ZIKV (34.4%; 33/96), whereas a PRNT for yellow fever virus using NHP sera showed no neutralization activity. ZIKV genomic RNA was not detected in splenic tissues from NHPs, suggesting that the presence of anti-ZIKV neutralizing antibodies represented resolved infections. Our evidence suggests that ZIKV is maintained in NHP reservoirs in Zambia.


Asunto(s)
Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas/inmunología , Virus del Dengue/inmunología , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Primates , Pruebas Serológicas/métodos , Zambia
16.
Trop Anim Health Prod ; 51(8): 2619-2627, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31250252

RESUMEN

Rift Valley fever (RVF) is a zoonotic mosquito-borne disease caused by RVF virus (RVFV) that causes abortions and high mortalities in livestock and is also associated with acute and fatal disease in humans. In the Democratic Republic of Congo (DRC), information on the epidemiology of RVF is limited, particularly among cattle reared by smallholder farmers. This cross-sectional study was conducted to investigate the seroprevalence of RVF in cattle raised by smallholder farmers in Kwilu Province of DRC, which has not yet reported an RVF epidemic. A total of 677 cattle sera were collected from four territories and tested for anti-RVFV antibodies using immunofluorescent assay and enzyme-linked immunosorbent assay. The overall seroprevalence of anti-RVFV IgG was 6.5% (44/677) (95% CI 4.81-8.7). There was a statistically significant difference in the seroprevalence among the territories (χ2 = 28.79, p < 0.001). Territory seroprevalences were as follows: Idiofa 14.08% (95% CI 9.78-19.76), Bulungu 4.14% (95% CI 1.83-8.68), Gungu 3.21% (95% CI 1.41-6.78), and Masi-Manimba 1.19% (95% CI 0.06-7.37). Seroprevalence differed significantly among age categories (p = 0.0017) and ecosystem (p < 0.001). The seroprevalence of animals aged between 1 and 2 years was 20.0% (95% CI 8.4-39.13) and was higher than group aged <1 year, between 2 and 3 years, and > 3 years. Forest area (18.92% (95% CI 12.35-27.7)) had higher seropositivity than savannah area (4.06% (95% CI 2.65-6.12)). Sex difference was not significant (χ2 = 0.14, p = 0.704). These findings indicate that cattle in Kwilu Province had been exposed to RVFV, which represents a significant risk for both livestock and human health.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Fiebre del Valle del Rift/epidemiología , Virus de la Fiebre del Valle del Rift , Crianza de Animales Domésticos , Animales , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/virología , Estudios Transversales , República Democrática del Congo/epidemiología , Femenino , Masculino , Prevalencia , Fiebre del Valle del Rift/virología , Estudios Seroepidemiológicos , Factores Sexuales
17.
Emerg Infect Dis ; 25(8): 1577-1580, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31146800

RESUMEN

We detected Marburg virus genome in Egyptian fruit bats (Rousettus aegyptiacus) captured in Zambia in September 2018. The virus was closely related phylogenetically to the viruses that previously caused Marburg outbreaks in the Democratic Republic of the Congo. This finding demonstrates that Zambia is at risk for Marburg virus disease.


Asunto(s)
Quirópteros/virología , Enfermedad del Virus de Marburg/virología , Marburgvirus , Animales , Genes Virales , Humanos , Enfermedad del Virus de Marburg/diagnóstico , Enfermedad del Virus de Marburg/epidemiología , Marburgvirus/clasificación , Marburgvirus/genética , Marburgvirus/aislamiento & purificación , Filogenia , Prevalencia , Vigilancia en Salud Pública , ARN Viral , Zambia/epidemiología
18.
Int J Parasitol Parasites Wildl ; 9: 234-238, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31198682

RESUMEN

Bat trypanosomes consist of more than 30 trypanosome species from over 70 species of bats. Recent studies suggest that bats play a role in disseminating trypanosomes from African continent to the terrestrial mammals both in the Afrotropic-Palearctic Ecozones and Nearctic Ecozone. However, the diversity, distribution, and evolution of bat trypanosomes are still unclear. To better understand their evolution, more genetic data of bat trypanosomes from a variety of locations are required. During a survey of Borrelia spp. of bats inhabiting a cave in Zambia, we observed flagellate parasites from 5 of 43 hemocultures. Sequence and phylogenetic analyses of the glycosomal glyceraldehyde 3-phosphate dehydrogenase gene (gGAPDH; 572 bp) and the 18S ribosomal RNA gene (18S rRNA gene; 1,079-1,091 bp) revealed that all were Trypanosoma spp. belonged to the Trypanosoma cruzi clade. Three and two of them exhibited the similarity with T. conorhini and T. dionisii, respectively. The present study provides the first genetic data on Trypanosoma spp. of bats inhabiting Zambia.

19.
Sci Rep ; 9(1): 5045, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962460

RESUMEN

The Smacoviridae has recently been classified as a family of small circular single-stranded DNA viruses. An increasing number of smacovirus genomes have been identified exclusively in faecal matter of various vertebrate species and from insect body parts. However, the genetic diversity and host range of smacoviruses remains to be fully elucidated. Herein, we report the genetic characterization of eleven circular replication-associated protein (Rep) encoding single-stranded (CRESS) DNA viruses detected in the faeces of Zambian non-human primates. Based on pairwise genome-wide and amino acid identities with reference smacovirus species, ten of the identified CRESS DNA viruses are assigned to the genera Porprismacovirus and Huchismacovirus of the family Smacoviridae, which bidirectionally encode two major open reading frames (ORFs): Rep and capsid protein (CP) characteristic of a type IV genome organization. The remaining unclassified CRESS DNA virus was related to smacoviruses but possessed a genome harbouring a unidirectionally oriented CP and Rep, assigned as a type V genome organization. Moreover, phylogenetic and recombination analyses provided evidence for recombination events encompassing the 3'-end of the Rep ORF in the unclassified CRESS DNA virus. Our findings increase the knowledge of the known genetic diversity of smacoviruses and highlight African non-human primates as carrier animals.


Asunto(s)
Virus ADN , Genoma Viral , Sistemas de Lectura Abierta , Proteínas Virales/genética , Animales , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/aislamiento & purificación , Haplorrinos , Filogenia , Zambia
20.
Parasit Vectors ; 12(1): 168, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975188

RESUMEN

BACKGROUND: Flea-borne spotted fever is a zoonosis caused by Rickettsia felis, a Gram-negative obligate intracellular bacterium. The disease has a worldwide distribution including western and eastern sub-Saharan Africa where it is associated with febrile illness in humans. However, epidemiology and the public health risks it poses remain neglected especially in developing countries including Zambia. While Ctenocephalides felis (cat fleas) has been suggested to be the main vector, other arthropods including mosquitoes have been implicated in transmission and maintenance of the pathogen; however, their role in the epidemiological cycle remains to be elucidated. Thus, the aim of this study was to detect and characterize R. felis from animal hosts and blood-sucking arthropod vectors in Zambia. METHODS: Dog blood and rodent tissue samples as well as cat fleas and mosquitoes were collected from various areas in Zambia. DNA was extracted and screened by polymerase chain reaction (PCR) targeting genus Rickettsia and amplicons subjected to sequence analysis. Positive samples were further subjected to R. felis-specific real-time quantitative polymerase chain reactions. RESULTS: Rickettsia felis was detected in 4.7% (7/150) of dog blood samples and in 11.3% (12/106) of rodent tissue samples tested by PCR; this species was also detected in 3.7% (2/53) of cat fleas infesting dogs, co-infected with Rickettsia asembonensis. Furthermore, 37.7% (20/53) of cat flea samples tested positive for R. asembonensis, a member of spotted fever group rickettsiae of unknown pathogenicity. All the mosquitoes tested (n = 190 pools) were negative for Rickettsia spp. CONCLUSIONS: These observations suggest that R. felis is circulating among domestic dogs and cat fleas as well as rodents in Zambia, posing a potential public health risk to humans. This is because R. felis, a known human pathogen is present in hosts and vectors sharing habitat with humans.


Asunto(s)
Enfermedades de los Gatos/microbiología , Enfermedades de los Perros/microbiología , Infecciones por Rickettsia/veterinaria , Rickettsia felis/aislamiento & purificación , Enfermedades de los Roedores/microbiología , Siphonaptera/microbiología , Animales , Enfermedades de los Gatos/parasitología , Gatos , Perros , Tipificación Molecular , Reacción en Cadena de la Polimerasa , Infecciones por Rickettsia/microbiología , Roedores , Zambia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...