Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Influenza Other Respir Viruses ; 18(6): e13332, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838093

RESUMEN

BACKGROUND: Mozambique was one of many African countries with limited testing capacity for SARS-CoV-2. Serosurveys, an alternative to estimate the real exposure to understand the epidemiology and transmission dynamics, have been scarce in Mozambique. Herein, we aimed to estimate the age-specific seroprevalence of SARS-CoV-2 in the general population of the Manhiça District, at four time points, for evaluating dynamics of exposure and the impact of vaccination. METHODS: We conducted four community-based seroepidemiological surveys separated by 3 months between May 2021 and June 2022 to assess the prevalence of SARS-CoV-2 antibodies. An age-stratified (0-19, 20-39, 40-59, and ≥ 60 years) sample of 4810 individuals was randomly selected from demographic surveillance database, and their blood samples were analyzed using WANTAI SARS-CoV-2 IgG + IgM ELISA. Nasopharyngeal swabs from a subsample of 2209 participants were also assessed for active infection by RT-qPCR. RESULTS: SARS-CoV-2 seroprevalence increased from 27.6% in the first survey (May 2021) to 63.6%, 91.2%, and 91.1% in the second (October 2021), third (January 2022), and fourth (May 2022) surveys, respectively. Seroprevalence in individuals < 18 years, who were not eligible for vaccination, increased from 23.1% in the first survey to 87.1% in the fourth. The prevalence of active infection was below 10.1% in all surveys. CONCLUSIONS: A high seroprevalence to SARS-CoV-2 was observed in the study population, including individuals not eligible for vaccination at that time, particularly after circulation of the highly transmissible Delta variant. These data are important to inform decision making on the vaccination strategies in the context of pandemic slowdown in Mozambique.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Población Rural , SARS-CoV-2 , Humanos , Mozambique/epidemiología , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/prevención & control , Estudios Seroepidemiológicos , Adulto , Adolescente , Preescolar , Persona de Mediana Edad , Adulto Joven , Niño , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Femenino , Masculino , Lactante , Anticuerpos Antivirales/sangre , Recién Nacido , Anciano , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre
2.
Vaccine ; 42(7): 1534-1541, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38331661

RESUMEN

INTRODUCTION: Botswana had a resurgent diarrhea outbreak in 2018, mainly affecting children under five years old. Botswana introduced rotavirus vaccine (RotarixTM) into the national immunization programme in July 2012. Official rotavirus vaccine coverage estimates averaged 77.2% over the five years following introduction. MATERIALS AND METHODS: The outbreak was investigated using multiple data sources, including stool laboratory testing, immunization data review, water assessment, and vaccine storage assessment. We reviewed official reports of the routine immunization data from 2013 to 2017 and compared district-level rotavirus vaccine coverage with district-level attack rates during the outbreak. RESULTS: During the outbreak, a total of 228 stool samples were tested at the national health laboratory and 152 (67%) of the specimens were positive for rotavirus. A portion of adequate samples (80) were selected for referral to the Regional Reference Lab. The laboratory testing of 80 samples at the Regional Reference Laboratory in South Africa showed that 91% of the stool samples were positive for rotavirus, and the dominant strain 47/80 (58.7%) was G3P[8]. The immunization data showed that rotavirus vaccine coverage varied widely among districts, and there was no correlation between districts with high attack rates and those with low immunization coverage. Water assessment showed that some water sources were contaminated with E Coli. There was no problem with vaccine storage. CONCLUSION: The outbreak was caused by rotavirus G3P[8], a strain that was not common in the country prior to the outbreak. Despite the significant pressure and anxiety that outbreaks cause, the number of diarrhea cases and deaths were less compared to pre-vaccine era due to the impact of vaccination. This highlights the need for continuous implementation of high impact child survival interventions.


Asunto(s)
Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Preescolar , Humanos , Lactante , Botswana/epidemiología , Diarrea/epidemiología , Diarrea/prevención & control , Brotes de Enfermedades , Escherichia coli , Heces , Genotipo , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Agua
3.
Clin Infect Dis ; 78(1): 210-216, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-37596934

RESUMEN

BACKGROUND: A low-level risk of intussusception following rotavirus vaccination has been observed in some settings and may vary by vaccine type. We examined the association between RotaTeq vaccination and intussusception in low-income settings in a pooled analysis from 5 African countries that introduced RotaTeq into their national immunization program. METHODS: Active surveillance was conducted at 20 hospitals to identify intussusception cases. A standard case report form was completed for each enrolled child, and vaccination status was determined by review of the child's vaccination card. The pseudo-likelihood adaptation of self-controlled case-series method was used to assess the association between RotaTeq administration and intussusception in the 1-7, 8-21, and 1-21 day periods after each vaccine dose in infants aged 28-245 days. RESULTS: Data from 318 infants with confirmed rotavirus vaccination status were analyzed. No clustering of cases occurred in any of the risk windows after any of the vaccine doses. Compared with the background risk of naturally occurring intussusception, no increased risk was observed after dose 1 in the 1-7 day (relative incidence = 2.71; 95% confidence interval [CI] = 0.47-8.03) or the 8-21 day window (relative incidence = 0.77; 95%CI = 0.0-2.69). Similarly, no increased risk of intussusception was observed in any risk window after dose 2 or 3. CONCLUSIONS: RotaTeq vaccination was not associated with increased risk of intussusception in this analysis from 5 African countries. This finding mirrors results from similar analyses with other rotavirus vaccines in low-income settings and highlights the need for vaccine-specific and setting-specific risk monitoring.


Asunto(s)
Intususcepción , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Humanos , Lactante , Intususcepción/inducido químicamente , Intususcepción/epidemiología , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/efectos adversos , Vacunas Atenuadas/efectos adversos , Vacunas Combinadas
4.
Viruses ; 15(12)2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-38140562

RESUMEN

Although the introduction of rotavirus vaccines has substantially contributed to the reduction in rotavirus morbidity and mortality, concerns persist about the re-emergence of variant strains that might alter vaccine effectiveness in the long term. The G9 strains re-emerged in Africa during the mid-1990s and have more recently become predominant in some countries, such as Ghana and Zambia. In Rwanda, during the 2011 to 2015 routine surveillance period, G9P[8] persisted during both the pre- and post-vaccine periods. The pre-vaccination cohort was based on the surveillance period of 2011 to 2012, and the post-vaccination cohort was based on the period of 2013 to 2015, excluding 2014. The RotaTeq® vaccine that was first introduced in Rwanda in 2012 is genotypically heterologous to Viral Protein 7 (VP7) G9. This study elucidated the whole genome of Rwandan G9P[8] rotavirus strains pre- and post-RotaTeq® vaccine introduction. Fecal samples from Rwandan children under the age of five years (pre-vaccine n = 23; post-vaccine n = 7), conventionally genotyped and identified as G9P[8], were included. Whole-genome sequencing was then performed using the Illumina® MiSeq platform. Phylogenetic analysis and pair-wise sequence analysis were performed using MEGA6 software. Distinct clustering of three post-vaccination study strains was observed in all 11 gene segments, compared to the other Rwandan G9P[8] study strains. Specific amino acid differences were identified across the gene segments of these three 2015 post-vaccine strains. Important amino acid differences were identified at position N242S in the VP7 genome segment of the three post-vaccine G9 strains compared to the other G9 strains. This substitution occurs at a neutralization epitope site and may slightly affect protein interaction at that position. These findings indicate that the Rwandan G9P[8] strains revealed a distinct sub-clustering pattern among post-vaccination study strains circulating in Rwanda, with changes at neutralization epitopes, which may play a role in neutralization escape from vaccine candidates. This emphasizes the need for continuous whole-genome surveillance to better understand the evolution and epidemiology of the G9P[8] strains post-vaccination.


Asunto(s)
Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Niño , Humanos , Preescolar , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Rwanda/epidemiología , Filogenia , Vacunación , Genotipo , Ghana/epidemiología , Genómica , Análisis por Conglomerados , Aminoácidos/genética , Antígenos Virales/genética , Proteínas de la Cápside/genética
5.
PLOS Glob Public Health ; 3(11): e0001358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38015834

RESUMEN

Rotavirus is the most common pathogen causing pediatric diarrhea and an important cause of morbidity and mortality in low- and middle-income countries. Previous evidence suggests that the introduction of rotavirus vaccines in national immunization schedules resulted in dramatic declines in disease burden but may also be changing the rotavirus genetic landscape and driving the emergence of new genotypes. We report genotype data of more than 16,000 rotavirus isolates from 40 countries participating in the Global Rotavirus Surveillance Network. Data from a convenience sample of children under five years of age hospitalized with acute watery diarrhea who tested positive for rotavirus were included. Country results were weighted by their estimated rotavirus disease burden to estimate regional genotype distributions. Globally, the most frequent genotypes identified after weighting were G1P[8] (31%), G1P[6] (8%) and G3P[8] (8%). Genotypes varied across WHO Regions and between countries that had and had not introduced rotavirus vaccine. G1P[8] was less frequent among African (36 vs 20%) and European (33 vs 8%) countries that had introduced rotavirus vaccines as compared to countries that had not introduced. Our results describe differences in the distribution of the most common rotavirus genotypes in children with diarrhea in low- and middle-income countries. G1P[8] was less frequent in countries that had introduced the rotavirus vaccine while different strains are emerging or re-emerging in different regions.

6.
Trop Med Infect Dis ; 8(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37624351

RESUMEN

(1) Background: Laboratories supporting the invasive bacteria preventable disease (IB-VPD) network are expected to demonstrate the capacity to identify the main etiological agents of pediatric bacterial meningitis (PBM) (Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae) on Gram stains and in phenotypic identification. Individual reports of sentinel site (SSL), national (NL) and regional reference (RRL) laboratories participating in the World Health Organization (WHO)-coordinated external quality assessment, distributed by the United Kingdom National External Quality Assessment (EQA) Services (UK NEQAS) for Microbiology between 2014 and 2019 were analyzed. (2) Methods: The panels consisted of (1) unstained bacterial smears for Gram staining, (2) viable isolates for identification and serotyping/serogrouping (ST/SG) and (3) simulated cerebral spinal fluid (CSF) samples for species detection and ST/SG using polymerase chain reaction (PCR). SSLs and NLs tested for Gram staining and species identification (partial panel). RRLs, plus any SSLs and NLs (optionally) also analyzed the simulated CSF samples (full panel). The passing score was ≥75% for NLs and SSLs, and ≥90% for RRLs and NLs/SSLs testing the full panel. (3) Results: Overall, 63% (5/8) of the SSLs and NLs were able to correctly identify the targeted pathogens, in 2019; but there were challenges to identify Haemophilus influenzae either on Gram stains (35% of the labs failed 2014), or in culture. Individual performance showed inconsistent capacity, with only 39% (13/33) of the SSLs/NLs passing the EQA exercise throughout all surveys in which they participated. RRLs performed well over the study period, but one of the two failed to reach the minimal passing score in 2016 and 2018; while the SSLs/NLs that optionally tested the full panel scored between 75% and 90% (intermediate pass category). (4) Conclusions: We identified a need for implementing a robust quality management system for timely identification of the gaps and then implementing corrective and preventive actions, in addition to continuous refresher training in the SSLs and NLs supporting the IB-VPD surveillance in the World Health Organization, Regional Office for Africa (WHO AFRO).

7.
Front Microbiol ; 14: 1193094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342557

RESUMEN

Mozambique introduced the rotavirus vaccine (Rotarix®; GlaxoSmithKline Biologicals, Rixensart, Belgium) in 2015, and since then, the Centro de Investigação em Saúde de Manhiça has been monitoring its impact on rotavirus-associated diarrhea and the trend of circulating strains, where G3P[8] was reported as the predominant strain after the vaccine introduction. Genotype G3 is among the most commonly detected Rotavirus strains in humans and animals, and herein, we report on the whole genome constellation of G3P[8] detected in two children (aged 18 months old) hospitalized with moderate-to-severe diarrhea at the Manhiça District Hospital. The two strains had a typical Wa-like genome constellation (I1-R1-C1-M1-A1-N1-T1-E1-H1) and shared 100% nucleotide (nt) and amino acid (aa) identities in 10 gene segments, except for VP6. Phylogenetic analysis demonstrated that genome segments encoding VP7, VP6, VP1, NSP3, and NSP4 of the two strains clustered most closely with porcine, bovine, and equine strains with identities ranging from 86.9-99.9% nt and 97.2-100% aa. Moreover, they consistently formed distinct clusters with some G1P[8], G3P[8], G9P[8], G12P[6], and G12P[8] strains circulating from 2012 to 2019 in Africa (Mozambique, Kenya, Rwanda, and Malawi) and Asia (Japan, China, and India) in genome segments encoding six proteins (VP2, VP3, NSP1-NSP2, NSP5/6). The identification of segments exhibiting the closest relationships with animal strains shows significant diversity of rotavirus and suggests the possible occurrence of reassortment events between human and animal strains. This demonstrates the importance of applying next-generation sequencing to monitor and understand the evolutionary changes of strains and evaluate the impact of vaccines on strain diversity.

8.
Pathogens ; 12(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37242329

RESUMEN

Africa has a high level of genetic diversity of rotavirus strains, which is suggested to be a possible reason contributing to the suboptimal effectiveness of rotavirus vaccines in this region. One strain that contributes to this rotavirus diversity in Africa is the G8P[4]. This study aimed to elucidate the entire genome and evolution of Rwandan G8P[4] strains. Illumina sequencing was performed for twenty-one Rwandan G8P[4] rotavirus strains. Twenty of the Rwandan G8P[4] strains had a pure DS-1-like genotype constellation, and one strain had a reassortant genotype constellation. Notable radical amino acid differences were observed at the neutralization sites when compared with cognate regions in vaccine strains potentially playing a role in neutralization escape. Phylogenetic analysis revealed that the closest relationship was with East African human group A rotavirus (RVA) strains for five of the genome segments. Two genome sequences of the NSP4 genome segment were closely related to bovine members of the DS-1-like family. Fourteen VP1 and eleven VP3 sequences had the closest relationships with the RotaTeq™ vaccine WC3 bovine genes. These findings suggest that the evolution of VP1 and VP3 might have resulted from reassortment events with RotaTeq™ vaccine WC3 bovine genes. The close phylogenetic relationship with East African G8P[4] strains from Kenya and Uganda suggests co-circulation in these countries. These findings highlight the need for continued whole-genomic surveillance to elucidate the evolution of G8P[4] strains, especially after the introduction of rotavirus vaccination.

9.
Vaccines (Basel) ; 11(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37112700

RESUMEN

BACKGROUND: Following the World Health Organization (WHO) recommendation, 38/47 countries have introduced rotavirus vaccines into the program of immunization in the WHO Regional Office for Africa (WHO/AFRO). Initially, two vaccines (Rotarix and Rotateq) were recommended and recently two additional vaccines (Rotavac and Rotasiil) have become available. However, the global supply challenges have increasingly forced some countries in Africa to switch vaccine products. Therefore, the recent WHO pre-qualified vaccines (Rotavac, Rotasiil) manufactured in India, offer alternatives and reduce global supply challenges related to rotavirus vaccines; Methods: Using a questionnaire, we administered to the Program Managers, Expanded Program for Immunization, we collected data on vaccine introduction and vaccine switch and the key drivers of the decisions for switching vaccines products, in the WHO/AFRO. Data was also collected fromliterature review and the global new vaccine introduction status data base maintained by WHO and other agencies. RESULTS: Of the 38 countries that introduced the vaccine, 35 (92%) initially adopted Rotateq or Rotarix; and 23% (8/35) switched between products after rotavirus vaccine introduction to either Rotavac (n = 3), Rotasiil (n = 2) or Rotarix (n = 3). Three countries (Benin, Democratic Republic of Congo and Nigeria) introduced the rotavirus vaccines manufactured in India. The decision to either introduce or switch to the Indian vaccines was predominately driven by global supply challenges or supply shortage. The withdrawal of Rotateq from the African market, or cost-saving for countries that graduated or in transition from Gavi support was another reason to switch the vaccine; Conclusions: The recently WHO pre-qualified vaccines have offered the countries, opportunities to adopt these cost-effective products, particularly for countries that have graduated or transitioning from full Gavi support, to sustain the demand of vaccines products.

10.
Clin Infect Dis ; 76(76 Suppl 1): S1-S4, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37074434

RESUMEN

Africa bears the brunt of diarrheal mortality globally. Rotavirus vaccination rates are high across the continent and demonstrate impact on diarrheal disease reduction. Nevertheless, there is room for significant improvement in managing rotavirus vaccine coverage, in access to recognized public services such as appropriate medical care, including oral rehydration therapy and improved water and sanitation.


Asunto(s)
Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Humanos , Lactante , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Diarrea/epidemiología , Diarrea/prevención & control , África/epidemiología , Vacunación
11.
EClinicalMedicine ; 56: 101797, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36880052

RESUMEN

Background: As of the end of 2021, twenty-four countries in the African meningitis belt have rolled out mass campaigns of MenAfriVac®, a meningococcal A conjugate vaccine (MACV) first introduced in 2010. Twelve have completed introduction of MACV into routine immunisation (RI) schedules. Although select post-campaign coverage data are published, no study currently comprehensively estimates MACV coverage from both routine and campaign sources in the meningitis belt across age, country, and time. Methods: In this modelling study, we assembled campaign data from the twenty-four countries that had introduced any immunisation activity during or before the year 2021 (Benin, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Côte d'Ivoire, Democratic Republic of the Congo, Ethiopia, Eritrea, the Gambia, Ghana, Guinea, Guinea Bissau, Kenya, Mali, Mauritania, Niger, Nigeria, Senegal, South Sudan, Sudan, Togo and Uganda) via WHO reports and RI data via systematic review. Next, we modelled RI coverage using Spatiotemporal Gaussian Process Regression. Then, we synthesized these estimates with campaign data into a cohort model, tracking coverage for each age cohort from age 1 to 29 years over time for each country. Findings: Coverage in high-risk locations amongst children aged 1-4 in 2021 was estimated to be highest in Togo with 96.0% (95% uncertainty interval [UI] 92.0-99.0), followed by Niger with 87.2% (95% UI 85.3-89.0) and Burkina Faso, with 86.4% (95% UI 85.1-87.6). These countries had high coverage values driven by an initial successful mass immunisation campaign, followed by a catch-up campaign, followed by introduction of RI. Due to the influence of older mass vaccination campaigns, coverage proportions skewed higher in the 1-29 age group than the 1-4 group, with a median coverage of 82.9% in 2021 in the broader age group compared to 45.6% in the narrower age group. Interpretation: These estimates highlight where gaps in immunisation remain and emphasise the need for broader efforts to strengthen RI systems. This methodological framework can be applied to estimate coverage for any vaccine that has been delivered in both routine and supplemental immunisation activities. Funding: Bill and Melinda Gates Foundation.

12.
Viruses ; 15(2)2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36851715

RESUMEN

The G2P[4] genotype is among the rotavirus strains that circulate commonly in humans. Several countries have reported its immediate upsurge after the introduction of rotavirus vaccination, raising concern about sub-optimal vaccine effectiveness against this genotype in the long term. This study aimed to gain insight into the evolution of post-vaccine Zambian G2P[4] group A rotavirus (RVA) strains and their overall genetic make-up by analysis of sequence alignments at the amino acid (AA) level. Twenty-nine Zambian G2P[4] rotavirus strains were subjected to whole-genome sequencing using the Illumina MiSeq® platform. All the strains exhibited the typical DS-1-like genotype constellation, and the nucleotide sequences of the 11 genome segments showed high nucleotide similarities (>97%). Phylogenetic analyses together with representative global G2P[4] RVA showed that Zambian strains clustered into human lineages IV (for VP2, VP4, VP7, NSP1, and NSP5), V (for VP1, VP3, VP6, NSP2, and NSP3), and XXIII (for NSP4). The AA differences between the lineages where the study strains clustered and lineages of global reference strains were identified and analyzed. Selection pressure analysis revealed that AA site seven in the Viral Protein 3 (VP3) genome segment was under positive selection. This site occurs in the region of intrinsic disorder in the VP3 protein, and Zambian G2P[4] strains could potentially be utilizing this intrinsically disordered region to survive immune pressure. The Zambian G2P[4] strains from 2012 to 2016 comprised the G2P[4] strains that have been circulating globally since the early 2000s, highlighting the epidemiological fitness of these contemporary G2P[4] strains. Continuous whole-genome surveillance of G2P[4] strains remains imperative to understand their evolution during the post-vaccination period.


Asunto(s)
Rotavirus , Humanos , Aminoácidos , Genómica , Filogenia , Rotavirus/genética , Zambia/epidemiología , Proteínas Virales/genética
13.
J Med Microbiol ; 72(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36748422

RESUMEN

Introduction. In 2009, the World Health Organization (WHO) established the Global Invasive Bacterial Vaccine Preventable Disease (IB-VPD) Surveillance Network (GISN) to monitor the global burden and aetiology of bacterial meningitis, pneumonia and sepsis caused by Haemophilus influenzae (Hi), Neisseria meningitidis (Nm) and Streptococcus pneumoniae (Sp).Hypothesis/Gap Statement. The GISN established an external quality assessment (EQA) programme for the characterization of Hi, Nm and Sp by culture and diagnostic PCR.Aim. To assess the performance of sentinel site laboratories (SSLs), national laboratories (NLs) and regional reference laboratories (RRLs) between 2014 and 2019 in the EQA programme.Methodology. Test samples consisted of bacterial smears for Gram-staining, viable isolates for identification and serotyping or serogrouping (ST/SG), plus simulated cerebrospinal fluid (CSF) samples for species detection and ST/SG by PCR. SSLs and NLs were only required to analyse the slides for Gram staining and identify the species of the live isolates. RRLs, and any SLs and NLs that had the additional laboratory capacity, were also required to ST/SG the viable isolates and analyse the simulated CSF samples.Results. Across the period, 69-112 SS/NL labs and eight or nine RRLs participated in the EQA exercise. Most participants correctly identified Nm and Sp in Gram-stained smears but were less successful with Hi and other species. SSLs/NLs identified the Hi, Nm and Sp cultures well and also submitted up to 56 % of Hi, 62 % of Nm and 33 % of Sp optional ST/SG results each year. There was an increasing trend in the proportion of correct results submitted over the 6 years for Nm and Sp. Some SSLs/NLs also performed the optional detection and ST/SG of the three organisms by PCR in simulated CSF from 2015 onwards; 89-100 % of the CSF samples were correctly identified and 76-93 % of Hi-, 90-100 % of Nm- and 75-100 % of Sp-positive samples were also correctly ST/SG across the distributions. The RRLs performed all parts of the EQA to a very high standard, with very few errors across all aspects of the EQA.Conclusion. The EQA has been an important tool in maintaining high standards of laboratory testing and building of laboratory capacity in the GISN.


Asunto(s)
Meningitis Bacterianas , Neisseria meningitidis , Enfermedades Prevenibles por Vacunación , Humanos , Laboratorios , Meningitis Bacterianas/diagnóstico , Meningitis Bacterianas/epidemiología , Meningitis Bacterianas/prevención & control , Streptococcus pneumoniae , Haemophilus influenzae/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Organización Mundial de la Salud
14.
Hum Vaccin Immunother ; 19(1): 2156231, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719054

RESUMEN

Côte d'Ivoire introduced rotavirus vaccine in March 2017. Rotavirus surveillance is conducted at Centre Hospitalier Universitaire de Yopougon in Abidjan, the capital city. Children <5 years of age are enrolled in rotavirus surveillance if admitted to the hospital with acute gastroenteritis. We used sentinel surveillance data from 2014 through mid-2019 to compare trends in rotavirus pediatric gastroenteritis hospitalizations before and after rotavirus vaccine introduction. We used Poisson regression to analyze changes in rotavirus prevalence, adjusting for calendar month and accounting for total monthly admissions; January 2014 - December 2016 was considered "pre-vaccine," and January 2017 - June 2019 was considered "post-vaccine." Age distribution and severity were compared between periods using the Mann-Whitney U test. Rotavirus-positive admissions declined 51% (95% CI: 28%-67%), from 31.5% pre-vaccine to 14.9% afterward. The median age of rotavirus-positive children increased from 7 months (interquartile range [IQR]: 5-11) in the pre-vaccine period to 11 months (IQR: 7-18, p = .005) in the post-vaccine period. The median severity score decreased from 11 to 9 (p = .008) among all children, and from 12 pre- to 10.5 post-vaccine (p = .35) among rotavirus-positive children. Our findings suggest that rotavirus vaccine introduction contributed to reduced rotavirus hospitalization in Abidjan and possibly more broadly.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Humanos , Niño , Lactante , Côte d'Ivoire/epidemiología , Gastroenteritis/epidemiología , Gastroenteritis/prevención & control , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Hospitalización , Heces
16.
Vaccine ; 40(44): 6422-6430, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36192272

RESUMEN

BACKGROUND: Rotavirus vaccine(Rotarix®) was introduced in Mozambique through its Expanded Program of Immunization in September 2015. We assessed the impact of rotavirus vaccination on childhood gastroenteritis-associated hospitalizations post-vaccine introduction in a high HIV prevalence rural setting of southern Mozambique. METHODS: We reviewed and compared the trend of hospitalizations (prevalence) and incidence rates of acute gastroenteritis (AGE), and rotavirus associated-diarrhea (laboratory confirmed rotavirus) in pre- (January 2008-August 2015) and post-rotavirus vaccine introduction periods (September 2015-December 2020), among children <5 years of age admitted to Manhiça District Hospital. RESULTS: From January 2008 to December 2020, rotavirus vaccination was found to contribute to the decline of the prevalence of AGE from 19% (95% CI: 18.14-20.44) prior to the vaccine introduction to 10% (95% CI: 8.89-11.48) in the post-introduction period, preventing 40% (95 % IE: 38-42) and 84% (95 % IE: 80-87) of the expected AGE and laboratory confirmed rotavirus cases, respectively, among infants. Similarly, the overall incidence of rotavirus was 11.8-fold lower in the post-vaccine introduction period (0.4/1000 child-years-at-risk [CYAR]; 95% CI: 0.3-0.6) compared with the pre-vaccination period (4.7/1000 CYAR; 95% CI: 4.2-5.1) with the highest reduction being observed among infants (16.8-fold lower from the 15.1/1000 CYAR in the pre-vaccine to 0.9/1000 CYAR in the post-vaccine eras). CONCLUSIONS: We documented a significant reduction in all-cause diarrhea hospitalizations and rotavirus positivity after vaccine introduction demonstrating the beneficial impact of rotavirus vaccination in a highly vulnerable population.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Lactante , Humanos , Niño , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Mozambique/epidemiología , Diarrea/epidemiología , Diarrea/prevención & control , Gastroenteritis/epidemiología , Gastroenteritis/prevención & control , Vacunación , Hospitalización
17.
Vaccine ; 40(41): 5933-5941, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36068112

RESUMEN

INTRODUCTION: Since August 2009, the Democratic Republic of Congo (DRC) has implemented sentinel site surveillance for rotavirus gastroenteritis. Limited hospital studies have been carried out, in DRC, describing the epidemiology of rotavirus diarrhea before rotavirus vaccine introduction in October 2019. This analysis describes the epidemiology of rotavirus gastroenteritis and characteristics of circulating viral strains from 2009 to 2019. MATERIALS AND METHODS: We analyzed demographic and clinic data collected from children < 5 years old enrolled at three rotavirus sentinel surveillance sites in DRC during 2009-2019, prior to rotavirus vaccine introduction in 2019. Data have been described and presented as mean ± standard deviation for quantitative variables with normal distribution, or as median with an interquartile range [Q1-Q3] for quantitative variables with non-normal distribution, or as absolute value with percentage for qualitative variables. RESULTS: Between August 2009 and December 2019, 4,928 children < 5 years old were admitted to sentinel surveillance sites for gastroenteritis in the DRC; the rotavirus positivity rate was 60 %. There was a slight male gender predominance (56 %), and the majority of children (79 %) were 0-11 months of age. Every year, the incidence was highest between May and September corresponding to the dry and cool season. Genotyping was performed for 50 % of confirmed rotavirus cases. The most common G genotypes were G1 (39 %) and G2 (24 %) and most common P genotypes were P[6] (49 %) and P[8] (37 %). The most common G-P genotype combinations were G1P[8] (22 %), G2P[6] (16 %) and G1P[6] (14 %). Genotype distribution varied by site, age group, and year. CONCLUSION: From 2009 to 2019, rotavirus-associated gastroenteritis represented a significant burden among DRC children under 5 who were admitted to sentinel sites. G1P[8] was the most commonly identified genotype. Continued monitoring after the introduction of rotavirus vaccine will be essential to monitor any changes in epidemiology.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Niño , Preescolar , República Democrática del Congo/epidemiología , Diarrea/prevención & control , Heces , Gastroenteritis/prevención & control , Genotipo , Humanos , Lactante , Masculino , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Vigilancia de Guardia
18.
Vaccines (Basel) ; 10(9)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36146541

RESUMEN

The 13th African Rotavirus Symposium was held as a virtual event hosted by the University of Nairobi, Kenya and The Kenya Paediatric Association on 3rd and 4th November 2021. This biennial event organized under the auspices of the African Rotavirus Network shapes the agenda for rotavirus research and prevention on the continent, attracting key international and regional opinion leaders, researchers, and public health scientists. The African Rotavirus Network is a regional network of institutions initially established in 1999, and now encompassing much of the diarrheal disease and rotavirus related research in Africa, in collaboration with the World Health Organization African Regional Office (WHO-AFRO), Ministries of Health, and other partners. Surges in SARS-CoV2 variants and concomitant travel restrictions limited the meeting to a webinar platform with invited scientific presentations and scientific presentations from selected abstracts. The scientific program covered updates on burden of diarrheal diseases including rotavirus, the genomic characterization of rotavirus strains pre- and post-rotavirus vaccine introduction, and data from clinical evaluation of new rotavirus vaccines in Africa. Finally, 42 of the 54 African countries have fully introduced rotavirus vaccination at the time of the meeting, including the two recently WHO pre-qualified vaccines from India. Nonetheless, the full benefit of rotavirus vaccination is yet to be realized in Africa where approximately 80% of the global burden of rotavirus mortality exists.

19.
Vaccines (Basel) ; 10(3)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335081

RESUMEN

Mozambique introduced monovalent rotavirus vaccine (Rotarix®) in September 2015. We evaluated the effectiveness of Rotarix® under conditions of routine use in Mozambican children hospitalized with acute gastroenteritis (AGE). A test negative case-control analysis was performed on data collected during 2017−2019 from children <5 years old, admitted with AGE in seven sentinel hospital sites in Mozambique. Adjusted VE was calculated for ≥1 dose of vaccine vs. zero doses using unconditional logistic regression, where VE = (1 − aOR) × 100%. VE estimates were stratified by age group, AGE severity, malnutrition, and genotype. Among 689 children eligible for analysis, 23.7% were rotavirus positive (cases) and 76.3% were negative (controls). The adjusted VE of ≥1 dose in children aged 6−11 months was 52.0% (95% CI, −11, 79), and −24.0% (95% CI, −459, 62) among children aged 12−23 months. Estimated VE was lower in stunted than non-stunted children (14% (95% CI, −138, 66) vs. 59% (95% CI, −125, 91)). Rotavirus vaccination appeared moderately effective against rotavirus gastroenteritis hospitalization in young Mozambican children. VE point estimates were lower in older and stunted children, although confidence intervals were wide and overlapped across strata. These findings provide additional evidence for other high-mortality countries considering rotavirus vaccine introduction.

20.
Viruses ; 14(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35062336

RESUMEN

Group A rotaviruses remain the leading cause of diarrhoea in children aged <5 years. Mozambique introduced rotavirus vaccine (Rotarix®) in September 2015. We report rotavirus genotypes circulating among symptomatic and asymptomatic children in Manhiça District, Mozambique, pre- and post-vaccine introduction. Stool was collected from enrolled children and screened for rotavirus by enzyme-immuno-sorbent assay. Positive specimens were genotyped for VP7 (G genotypes) and VP4 (P genotypes) by the conventional reverse transcriptase polymerase chain reaction. The combination G12P[8] was more frequently observed in pre-vaccine than in post-vaccine introduction, in moderate to severe diarrhoea (34%, 61/177 vs. 0, p < 0.0001) and controls (23%, 26/113 vs. 0, p = 0.0013) and mixed genotypes (36%, 24/67 vs. 7% 4/58, p = 0.0003) in less severe diarrhoea. We observed changes in post-vaccine compared to pre-vaccine introduction, where G3P[4] and G3P[8] were prevalent in moderate to severe diarrhoea (10%, 5/49 vs. 0, p = 0.0002; and 14%, 7/49 vs. 1%, 1/177, p < 0.0001; respectively), and in less severe diarrhoea (21%, 12/58 vs. 0, p = 0.003; and 24%, 14/58 vs. 0, p < 0.0001; respectively). Our surveillance demonstrated the circulation of similar genotypes contemporaneously among cases and controls, as well as switching from pre- to post-vaccine introduction. Continuous surveillance is needed to evaluate the dynamics of the changes in genotypes following vaccine introduction.


Asunto(s)
Epidemiología Molecular , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Rotavirus/genética , Estudios de Casos y Controles , Preescolar , Diarrea/epidemiología , Diarrea/virología , Heces/virología , Genotipo , Humanos , Lactante , Recién Nacido , Mozambique/epidemiología , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus , Vacunas Atenuadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...