Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurology ; 103(6): e209803, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39208366

RESUMEN

BACKGROUND AND OBJECTIVES: Ataxia is primarily considered to originate from the cerebellum. However, it can manifest without obvious cerebellar damage, such as in anterior circulation stroke, leaving the mechanisms of ataxia unclear. The aim of this study was to investigate whether stroke lesions causing limb ataxia localize to a common brain network. METHODS: In this prospective cohort study, adult patients with new-onset stroke with visible lesions on CT or MRI from Turku University Hospital, Finland, were clinically examined (1) after their stroke while still admitted to the hospital (baseline) and (2) 4 months later (follow-up) to assess limb ataxia. Lesion locations and their functional connectivity, computed using openly available data from 1,000 healthy volunteers from the Brain Genome Superstruct Project, were compared voxel-by-voxel across the whole brain between patients with and without ataxia, using voxel-based lesion-symptom mapping and lesion network mapping. The findings were confirmed in an independent stroke patient cohort with identical clinical assessments. RESULTS: One hundred ninety-seven patients (mean age 67.2 years, 39%female) were included in this study. At baseline, 35 patients (68.3 years, 34%female) had and 162 (67.0 years, 40%female) did not have new-onset acute limb ataxia. At follow-up, additional 4 patients had developed late-onset limb ataxia, totalling to 39 patients (68.6 years, 36%female) with limb ataxia at any point. One hundred eighteen patients (66.2 years, 40%female) did not have ataxia at any point (n = 40 with missing follow-up data). Lesions in 54% of the patients with acute limb ataxia were located outside the cerebellum and cerebellar peduncles, and we did not find an association between specific lesion locations and ataxia. Lesions causing acute limb ataxia, however, were connected to a common network centered on the intermediate zone cerebellum and cerebellar peduncles (lesion connectivity in patients with vs without acute limb ataxia, pFWE < 0.05). The results were similar when comparing patients with and without ataxia at any point, and when excluding lesions in the cerebellum and cerebellar peduncles (pFWE < 0.05). The findings were confirmed in the independent stroke dataset (n = 96), demonstrating an OR of 2.27 (95% CI 1.32-3.91) for limb ataxia per standard deviation increase in limb ataxia network damage score. DISCUSSION: Lesions causing limb ataxia occur in heterogeneous locations but localize to a common brain network.


Asunto(s)
Ataxia , Imagen por Resonancia Magnética , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Anciano , Ataxia/etiología , Ataxia/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/etiología , Persona de Mediana Edad , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Cohortes , Extremidades/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Anciano de 80 o más Años
2.
Ann Neurol ; 96(2): 262-275, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38767012

RESUMEN

OBJECTIVE: This study was undertaken to investigate the effects of dietary caffeine intake on striatal dopamine function and clinical symptoms in Parkinson disease in a cross-sectional and longitudinal setting. METHODS: One hundred sixty-three early Parkinson disease patients and 40 healthy controls were investigated with [123I]FP-CIT single photon emission computed tomography, and striatal dopamine transporter binding was evaluated in association with the level of daily coffee consumption and clinical measures. After a median interval of 6.1 years, 44 patients with various caffeine consumption levels underwent clinical and imaging reexamination including blood caffeine metabolite profiling. RESULTS: Unmedicated early Parkinson disease patients with high coffee consumption had 8.3 to 15.4% lower dopamine transporter binding in all studied striatal regions than low consumers, after accounting for age, sex, and motor symptom severity. Higher caffeine consumption was further associated with a progressive decline in striatal binding over time. No significant effects of caffeine on motor function were observed. Blood analyses demonstrated a positive correlation between caffeine metabolites after recent caffeine intake and dopamine transporter binding in the ipsilateral putamen. INTERPRETATION: Chronic caffeine intake prompts compensatory and cumulative dopamine transporter downregulation, consistent with caffeine's reported risk reduction in Parkinson disease. However, this decline does not manifest in symptom changes. Transiently increased dopamine transporter binding after recent caffeine intake has implications for dopaminergic imaging guidelines. ANN NEUROL 2024;96:262-275.


Asunto(s)
Cafeína , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Enfermedad de Parkinson , Humanos , Cafeína/administración & dosificación , Masculino , Femenino , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Estudios Transversales , Dopamina/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Estudios Longitudinales , Café , Cuerpo Estriado/metabolismo , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Tropanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA