Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(26): E6020-E6029, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29899144

RESUMEN

The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL's catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1's IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1-LPL interactions and the ability of GPIHBP1 to protect LPL against ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1-LPL encounter via electrostatic steering, increasing the association rate constant (kon) for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1's IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1's ability to preserve LPL structure and activity.


Asunto(s)
Células Endoteliales/metabolismo , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/metabolismo , Proteína 4 Similar a la Angiopoyetina/química , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Animales , Células Endoteliales/patología , Humanos , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/metabolismo , Hiperlipoproteinemia Tipo I/patología , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Ratones , Unión Proteica , Dominios Proteicos , Receptores de Lipoproteína/química , Receptores de Lipoproteína/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
2.
Elife ; 52016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929370

RESUMEN

Lipoprotein lipase (LPL) undergoes spontaneous inactivation via global unfolding and this unfolding is prevented by GPIHBP1 (Mysling et al., 2016). We now show: (1) that ANGPTL4 inactivates LPL by catalyzing the unfolding of its hydrolase domain; (2) that binding to GPIHBP1 renders LPL largely refractory to this inhibition; and (3) that both the LU domain and the intrinsically disordered acidic domain of GPIHBP1 are required for this protective effect. Genetic studies have found that a common polymorphic variant in ANGPTL4 results in lower plasma triglyceride levels. We now report: (1) that this ANGPTL4 variant is less efficient in catalyzing the unfolding of LPL; and (2) that its Glu-to-Lys substitution destabilizes its N-terminal α-helix. Our work elucidates the molecular basis for regulation of LPL activity by ANGPTL4, highlights the physiological relevance of the inherent instability of LPL, and sheds light on the molecular defects in a clinically relevant variant of ANGPTL4.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/metabolismo , Lipoproteína Lipasa/metabolismo , Pliegue de Proteína , Receptores de Lipoproteína/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Lipoproteína Lipasa/química , Espectrometría de Masas , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dominios Proteicos , Mapeo de Interacción de Proteínas
3.
J Biol Chem ; 291(49): 25542-25552, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27784785

RESUMEN

Transglutaminase 2 (TG2) is a Ca2+-dependent cross-linking enzyme involved in the pathogenesis of CD. We have previously characterized a panel of anti-TG2 mAbs generated from gut plasma cells of celiac patients and identified four epitopes (epitopes 1-4) located in the N-terminal part of TG2. Binding of the mAbs induced allosteric changes in TG2. Thus, we aimed to determine whether these mAbs could influence enzymatic activity through modulation of TG2 susceptibility to oxidative inactivation and Ca2+ affinity. All tested epitope 1 mAbs, as well as 679-14-D04, which recognizes a previously uncharacterized epitope, prevented oxidative inactivation and increased Ca2+ sensitivity of TG2. We have identified crucial residues for binding of 679-14-D04 located within a Ca2+ binding site. Epitope 1 mAbs and 679-14-D04, although recognizing separate epitopes, behaved similarly when assessing their effect on TG2 conformation, suggesting that the shared effects on TG2 function can be explained by induction of the same conformational changes. None of the mAbs targeting other epitopes showed these effects, but epitope 2 mAbs reduced the rate of TG2-catalyzed reactions. Collectively, these effects could be relevant to the pathogenesis of CD. In A20 B cells transduced with TG2-specific B-cell receptor, epitope 2-expressing cells had poorer uptake of TG2-gluten complexes and were less efficient in gluten epitope presentation to T cells than cells expressing an epitope 1 receptor. Thus, the ability of epitope 1-targeting B cells to keep TG2 active and protected from oxidation might explain why generation of epitope 1-targeting plasma cells seems to be favored in celiac patients.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedad Celíaca/inmunología , Epítopos/inmunología , Proteínas de Unión al GTP/inmunología , Glútenes/inmunología , Transglutaminasas/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Enfermedad Celíaca/genética , Enfermedad Celíaca/patología , Línea Celular Tumoral , Proteínas de Unión al GTP/genética , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/inmunología , Humanos , Ratones , Células Plasmáticas/inmunología , Células Plasmáticas/patología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas/genética
4.
Elife ; 5: e12095, 2016 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-26725083

RESUMEN

GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia.


Asunto(s)
Lipoproteína Lipasa/metabolismo , Pliegue de Proteína , Receptores de Lipoproteína/metabolismo , Animales , Dominio Catalítico , Línea Celular , Estabilidad de Enzimas , Humanos , Cinética , Lipoproteína Lipasa/química , Espectrometría de Masas , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de Lipoproteína/química , Resonancia por Plasmón de Superficie
5.
Anal Chem ; 87(17): 8880-8, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26249042

RESUMEN

Analysis of disulfide-bonded proteins by hydrogen/deuterium exchange mass spectrometry (HDX-MS) requires effective and rapid reduction of disulfide bonds before enzymatic digestion in order to increase sequence coverage. In a conventional HDX-MS workflow, disulfide bonds are reduced chemically by addition of a reducing agent to the quench solution (e.g., tris(2-carboxyethyl)phosphine (TCEP)). The chemical reduction, however, is severely limited under quenched conditions due to a narrow time window as well as low pH and temperature. Here, we demonstrate the real-world applicability of integrating electrochemical reduction into an online HDX-MS workflow. We have optimized the electrochemical reduction efficiency during HDX-MS analysis of two particularly challenging disulfide stabilized proteins: a therapeutic IgG1-antibody and nerve growth factor-ß (NGF). Several different parameters (flow rate and applied square wave potential, as well as the type of labeling and quench buffer) were investigated, and the optimized workflow increased the sequence coverage of NGF from 46% with chemical reduction to 99%, when electrochemical reduction was applied. Additionally, the optimized workflow also enabled a similar high sequence coverage of 96% and 87% for the heavy and light chain of the IgG1-antibody, respectively. The presented results demonstrate the successful electrochemical reduction during HDX-MS analysis of both a small exceptional tightly disulfide-bonded protein (NGF) as well as the largest protein attempted to date (IgG1-antibody). We envision that online electrochemical reduction is poised to decrease the complexity of sample handling and increase the versatility of the HDX-MS technique.


Asunto(s)
Anticuerpos Monoclonales/análisis , Medición de Intercambio de Deuterio , Disulfuros/química , Técnicas Electroquímicas , Inmunoglobulina G/análisis , Internet , Factor de Crecimiento Nervioso/análisis , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Temperatura
6.
Proc Natl Acad Sci U S A ; 111(48): 17146-51, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404341

RESUMEN

The multifunctional enzyme transglutaminase 2 (TG2) is the target of autoantibodies in the gluten-sensitive enteropathy celiac disease. In addition, the enzyme is responsible for deamidation of gluten peptides, which are subsequently targeted by T cells. To understand the regulation of TG2 activity and the enzyme's role as an autoantigen in celiac disease, we have addressed structural properties of TG2 in solution by using hydrogen/deuterium exchange monitored by mass spectrometry. We demonstrate that Ca(2+) binding, which is necessary for TG2 activity, induces structural changes in the catalytic core domain of the enzyme. Cysteine oxidation was found to abolish these changes, suggesting a mechanism whereby disulfide bond formation inactivates the enzyme. Further, by using TG2-specific human monoclonal antibodies generated from intestinal plasma cells of celiac disease patients, we observed that binding of TG2 by autoantibodies can induce structural changes that could be relevant for the pathogenesis. Detailed mapping of two of the main epitopes targeted by celiac disease autoantibodies revealed that they are located adjacent to each other in the N-terminal part of the TG2 molecule.


Asunto(s)
Autoanticuerpos/inmunología , Medición de Intercambio de Deuterio/métodos , Epítopos/inmunología , Proteínas de Unión al GTP/inmunología , Transglutaminasas/inmunología , Autoanticuerpos/metabolismo , Sitios de Unión/genética , Calcio/química , Calcio/metabolismo , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Disulfuros/química , Disulfuros/metabolismo , Electroforesis en Gel de Poliacrilamida , Mapeo Epitopo/métodos , Epítopos/química , Epítopos/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Humanos , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Intestinos/patología , Espectrometría de Masas/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Estructura Terciaria de Proteína , Transglutaminasas/química , Transglutaminasas/genética
7.
Angew Chem Int Ed Engl ; 53(29): 7560-3, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24740651

RESUMEN

Neurodegenerative disorders are characterized by the formation of protein oligomers and amyloid fibrils, which in the case of Parkinson's disease involves the protein α-synuclein (αSN). Cytotoxicity is mainly associated with the oligomeric species, but we still know little about their assembly and structure. Hydrogen/deuterium exchange (HDX) monitored by mass spectrometry is used to analyze oligomers formed by wild-type (wt) αSN and also three familial αSN mutants (A30P, E46K, and A53T). All four variants show co-existence of two different oligomers. The backbone amides of oligomer type I are protected from exchange with D2 O until they dissociate into monomeric αSN by EX1 exchange kinetics. Fewer residues are protected against exchange in oligomer type II, but this type does not revert to αSN monomers. Both oligomers are protected in the core sequence Y39-A89. Based on incubation studies, oligomer type I appears to form straight fibrils, while oligomer type II forms amorphous clusters that do not directly contribute to the fibrillation process.


Asunto(s)
Biopolímeros/química , Espectrometría de Masas/métodos , alfa-Sinucleína/química
8.
Anal Chem ; 86(1): 340-5, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24251601

RESUMEN

Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically requires a high concentration (>200 mM) of the chemical reducing agent Tris(2-carboxyethyl)phosphine (TCEP) as its reduction rate constant is decreased at low pH and temperature. Serious adverse effects on chromatographic and mass spectrometric performances have been reported when using high concentrations of TCEP. In the present study, we explore the feasibility of using electrochemical reduction as a substitute for TCEP in HDX-MS analyses. Our results demonstrate that efficient disulfide bond reduction is readily achieved by implementing an electrochemical cell into the HDX-MS workflow. We also identify some challenges in using electrochemical reduction in HDX-MS analyses and provide possible conditions to attenuate these limitations. For example, high salt concentrations hamper disulfide bond reduction, necessitating additional dilution of the sample with aqueous acidic solution at quench conditions.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Disulfuros/química , Técnicas Electroquímicas/métodos , Espectrometría de Masas/métodos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/química , Cromatografía Liquida/métodos , Conformación Proteica
9.
Biochemistry ; 52(51): 9097-103, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24191706

RESUMEN

Soluble oligomers formed by α-synuclein (αSN) are suspected to play a central role in neuronal cell death during Parkinson's disease. While studies have probed the surface structure of these oligomers, little is known about the backbone dynamics of αSN when they form soluble oligomers. Using hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS), we have analyzed the structural dynamics of soluble αSN oligomers. The analyzed oligomers were metastable, slowly dissociating to monomers over a period of 21 days, after excess monomer had been removed. The C-terminal region of αSN (residues 94-140) underwent isotopic exchange very rapidly, demonstrating a highly dynamic region in the oligomeric state. Three regions (residues 4-17, 39-54, and 70-89) were strongly protected against isotopic exchange in the oligomers, indicating the presence of a stable hydrogen-bonded or solvent-shielded structure. The protected regions were interspersed by two somewhat more dynamic regions (residues 18-38 and 55-70). In the oligomeric state, the isotopic exchange pattern of the region of residues 35-95 of αSN corresponded well with previous nuclear magnetic resonance and electron paramagnetic resonance analyses performed on αSN fibrils and indicated a possible zipperlike maturation mechanism for αSN aggregates. We find the protected N-terminus (residues 4-17) to be of particular interest, as this region has previously been observed to be highly dynamic for both monomeric and fibrillar αSN. This region has mainly been described in relation to membrane binding of αSN, and structuring may be important in relation to disease.


Asunto(s)
alfa-Sinucleína/metabolismo , Medición de Intercambio de Deuterio , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Peso Molecular , Conformación Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidad , Espectrometría de Masa por Ionización de Electrospray , alfa-Sinucleína/química , alfa-Sinucleína/genética
10.
Methods Mol Biol ; 951: 131-44, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23296529

RESUMEN

Glycoproteins, and in particular glycopeptides, are highly hydrophilic and are often not retained by reversed phase (RP) chromatography. The separation principle of normal phase (NP) is based on hydrophilic interactions, which in many aspects is complementary to RP separations. Hydrophilic interaction liquid chromatography (HILIC) is a fairly new variation of the NP separations used in the 1970s, the major difference being the use of aqueous solvents. HILIC provides a versatile tool for enrichment of glycopeptides before mass spectrometric (MS) analysis, particularly when used for solid phase extraction (SPE), or in combination with other chromatographic resins or ion-pairing reagents. HILIC SPE can be used for glyco-profiling, i.e., for determining the glycan heterogeneity at one specific glycosylation site, for enrichment of glycopeptides from a complex mixture of peptides, as well as for pre-fractionation of complex samples at the protein or peptide level. In this chapter we present a straightforward HILIC SPE enrichment technique and then combine C18 RP and HILIC enrichment for analysis of glycopeptides. Finally, we demonstrate HILIC enrichment using trifluoroacetic acid as an ion-pairing reagent for the enrichment of glycopeptides prior to mass spectrometry analysis.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/métodos , Cromatografía Liquida/métodos , Glicopéptidos/química , Glicopéptidos/aislamiento & purificación , Interacciones Hidrofóbicas e Hidrofílicas , Extracción en Fase Sólida/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Alquilación , Animales , Glicopéptidos/metabolismo , Glicosilación , Inmunoglobulina G/metabolismo , Ratones , Proteolisis , Factores de Tiempo
11.
J Biol Chem ; 287(41): 34304-15, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22896701

RESUMEN

The urokinase-type plasminogen activator receptor (uPAR) provides a rendezvous between proteolytic degradation of the extracellular matrix and integrin-mediated adhesion to vitronectin. These processes are, however, tightly linked because the high affinity binding of urokinase regulates the binding of uPAR to matrix-embedded vitronectin. Although crystal structures exist to define the corresponding static bi- and trimolecular receptor complexes, it is evident that the dynamic property of uPAR plays a decisive role in its function. In the present study, we combine small angle x-ray scattering, hydrogen-deuterium exchange, and surface plasmon resonance to develop a structural model describing the allosteric regulation of uPAR. We show that the flexibility of its N-terminal domain provides the key for understanding this allosteric mechanism. Importantly, our model has direct implications for understanding uPAR-assisted cell adhesion and migration as well as for translational research, including targeted intervention therapy and non-invasive tumor imaging in vivo.


Asunto(s)
Matriz Extracelular , Proteolisis , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Vitronectina , Regulación Alostérica , Animales , Adhesión Celular , Línea Celular , Movimiento Celular , Medición de Intercambio de Deuterio , Drosophila melanogaster , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Invasividad Neoplásica , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica , Estructura Terciaria de Proteína , Receptores del Activador de Plasminógeno Tipo Uroquinasa/química , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Dispersión de Radiación , Relación Estructura-Actividad , Vitronectina/química , Vitronectina/metabolismo , Rayos X
12.
Anal Chem ; 82(13): 5598-609, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20536156

RESUMEN

Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE) in a microcolumn format. The method involves TFA ion pairing (IP) to increase the hydrophilicity difference between glycopeptides and nonglycosylated peptides. Three mobile phases were investigated, i.e., 2% formic acid (defined as IP(2% FA) ZIC-HILIC SPE), 0.1% TFA and 1% TFA (defined as IP(0.1% TFA) and IP(1% TFA) ZIC-HILIC SPE) all containing 80% acetonitrile. Samples of increasing complexities, i.e., digests of single glycoproteins, a five-glycoprotein mixture, and depleted plasma, were used in the study. The presence of TFA in the mobile phase significantly improved the glycopeptide enrichment for all complexities, as evaluated by enhanced glycopeptide detection using MALDI-TOF MS and RP-LC-ESI-MS/MS, e.g., the glycopeptide ion signals were increased by up to 3.7-fold compared to IP(2% FA) conditions. The enhanced glycopeptide detection was promoted by a substantial depletion of nonglycosylated peptides, offering an almost complete isolation of IgG glycopeptides using a single SPE enrichment step and a reduction from 711 nonglycosylated peptides observed in the IP(2% FA) ZIC-HILIC SPE retained plasma fraction, to only 157 and 97 when 0.1% and 1% TFA was used in the mobile phase. In conclusion, this systematic study has shown that TFA-containing mobile phases increase glycopeptide enrichment efficiency considerably for a broad range of sample complexities when using ZIC-HILIC SPE.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Glicopéptidos/química , Extracción en Fase Sólida/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Glicopéptidos/sangre , Glicopéptidos/aislamiento & purificación , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Ratones , Proteómica
13.
Anal Chem ; 81(10): 3933-43, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19358553

RESUMEN

Site-specific glycoprofiling of N-linked glycopeptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique, but its quantitative accuracy lacks documentation. Thus, a systematic study of widely different glycopeptides was performed to determine the relationship between the relative abundances of the individual glycoforms and the MALDI-TOF MS signal strength. Glycopeptides derived from glycoproteins containing neutral glycans (ribonuclease B, IgG, and ovalbumin) were initially profiled and yielded excellent and reproducible quantitation (correlation coefficient r = 0.9958, n = 5) when evaluated against a normal phase HPLC 2-AB glycan profile. Similarly, precise quantitation was observed for various forms of N-glycans (free, permethylated, and fluorescence-labeled) using MS. In addition, three different sialoglycopeptides from fetuin were site-specifically profiled, and good correlation between peak intensities and relative abundances was found with only a minor loss of sialic acids (r = 0.9664, n = 5). For glycopeptide purification, a range of hydrophilic and graphite materials packed in microcolumn format proved capable of performing desalting without loss of quantitative information, but highlighted the column capacity as a critical parameter. In conclusion, MALDI-TOF MS signal strength of glycopeptides has been found to accurately reflect the relative quantities of glycoforms, providing that certain technical issues are considered, i.e., nonbiased sample handling, matrix choice, and instrumental settings. This enables rapid and sensitive site-specific glycoprofiling of N-glycan populations to promote biomarker discovery and elucidation of glycan structure/function relationships.


Asunto(s)
Glicopéptidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cromatografía Líquida de Alta Presión/métodos , Colorantes Fluorescentes/química , Glicopéptidos/química , Polisacáridos/análisis , Polisacáridos/química , Ácidos Siálicos/química , Sialoglicoproteínas/análisis , Sialoglicoproteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA