Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxid Redox Signal ; 34(11): 875-889, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-31621376

RESUMEN

Significance: Cardiovascular disorders are the most important cause of morbidity and mortality in the Western world. Monogenic developmental disorders of the heart and vessels are highly valuable to study the physiological and pathological processes in cardiovascular system homeostasis. The arterial tortuosity syndrome (ATS) is a rare, autosomal recessive connective tissue disorder showing lengthening, tortuosity, and stenosis of the large arteries, with a propensity for aneurysm formation. In histopathology, it associates with fragmentation and disorganization of elastic fibers in several tissues, including the arterial wall. ATS is caused by pathogenic variants in SLC2A10 encoding the facilitative glucose transporter (GLUT)10. Critical Issues: Although several hypotheses have been forwarded, the molecular mechanisms linking disrupted GLUT10 activity with arterial malformations are largely unknown. Recent Advances: The vascular and systemic manifestations and natural history of ATS patients have been largely delineated. GLUT10 was identified as an intracellular transporter of dehydroascorbic acid, which contributes to collagen and elastin cross-linking in the endoplasmic reticulum, redox homeostasis in the mitochondria, and global and gene-specific methylation/hydroxymethylation affecting epigenetic regulation in the nucleus. We revise here the current knowledge on ATS and the role of GLUT10 within the compartmentalization of ascorbate in physiological and diseased states. Future Directions: Centralization of clinical, treatment, and outcome data will enable better management for ATS patients. Establishment of representative animal disease models could facilitate the study of pathomechanisms underlying ATS. This might be relevant for other forms of vascular dysplasia, such as isolated aneurysm formation, hypertensive vasculopathy, and neovascularization. Antioxid. Redox Signal. 34, 875-889.


Asunto(s)
Arterias/anomalías , Ácido Ascórbico/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Homeostasis/genética , Inestabilidad de la Articulación/genética , Enfermedades Cutáneas Genéticas/genética , Malformaciones Vasculares/genética , Animales , Arterias/metabolismo , Arterias/patología , Ácido Ascórbico/metabolismo , Ácido Ascórbico/uso terapéutico , Tejido Elástico/metabolismo , Tejido Elástico/patología , Humanos , Inestabilidad de la Articulación/metabolismo , Inestabilidad de la Articulación/patología , Inestabilidad de la Articulación/terapia , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación/genética , Oxidación-Reducción , Enfermedades Cutáneas Genéticas/metabolismo , Enfermedades Cutáneas Genéticas/patología , Enfermedades Cutáneas Genéticas/terapia , Malformaciones Vasculares/metabolismo , Malformaciones Vasculares/patología , Malformaciones Vasculares/terapia
2.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717403

RESUMEN

Several promising anti-cancer drug-GnRH (gonadotropin-releasing hormone) conjugates have been developed in the last two decades, although none of them have been approved for clinical use yet. Crizotinib is an effective multi-target kinase inhibitor, approved against anaplastic lymphoma kinase (ALK)- or ROS proto-oncogene 1 (ROS-1)-positive non-small cell lung carcinoma (NSCLC); however, its application is accompanied by serious side effects. In order to deliver crizotinib selectively into the tumor cells, we synthesized novel crizotinib analogues and conjugated them to a [d-Lys6]-GnRH-I targeting peptide. Our most prominent crizotinib-GnRH conjugates, the amide-bond-containing [d-Lys6(crizotinib*)]-GnRH-I and the ester-bond-containing [d-Lys6(MJ55*)]-GnRH-I, were able to bind to GnRH-receptor (GnRHR) and exert a potent c-Met kinase inhibitory effect. The efficacy of compounds was tested on the MET-amplified and GnRHR-expressing EBC-1 NSCLC cells. In vitro pharmacological profiling led to the conclusion that that crizotinib-GnRH conjugates are transported directly into lysosomes, where the membrane permeability of crizotinib is diminished. As a consequence of GnRHR-mediated endocytosis, GnRH-conjugated crizotinib bypasses its molecular targets-the ATP-binding site of RTKs- and is sequestered in the lysosomes. These results explained the lower efficacy of crizotinib-GnRH conjugates in EBC-1 cells, and led to the conclusion that drug escape from the lysosomes is a major challenge in the development of clinically relevant anti-cancer drug-GnRH conjugates.


Asunto(s)
Crizotinib/farmacología , Sistemas de Liberación de Medicamentos , Hormona Liberadora de Gonadotropina/farmacología , Lisosomas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular , Crizotinib/síntesis química , Crizotinib/química , Diseño de Fármacos , Fibroblastos/metabolismo , Galectinas/metabolismo , Hormona Liberadora de Gonadotropina/síntesis química , Hormona Liberadora de Gonadotropina/química , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Modelos Biológicos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/metabolismo , Receptores LHRH/metabolismo , Piel/citología
3.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-31771288

RESUMEN

Glucose is a basic nutrient in most of the creatures; its transport through biological membranes is an absolute requirement of life. This role is fulfilled by glucose transporters, mediating the transport of glucose by facilitated diffusion or by secondary active transport. GLUT (glucose transporter) or SLC2A (Solute carrier 2A) families represent the main glucose transporters in mammalian cells, originally described as plasma membrane transporters. Glucose transport through intracellular membranes has not been elucidated yet; however, glucose is formed in the lumen of various organelles. The glucose-6-phosphatase system catalyzing the last common step of gluconeogenesis and glycogenolysis generates glucose within the lumen of the endoplasmic reticulum. Posttranslational processing of the oligosaccharide moiety of glycoproteins also results in intraluminal glucose formation in the endoplasmic reticulum (ER) and Golgi. Autophagic degradation of polysaccharides, glycoproteins, and glycolipids leads to glucose accumulation in lysosomes. Despite the obvious necessity, the mechanism of glucose transport and the molecular nature of mediating proteins in the endomembranes have been hardly elucidated for the last few years. However, recent studies revealed the intracellular localization and functional features of some glucose transporters; the aim of the present paper was to summarize the collected knowledge.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucosa/metabolismo , Proteínas de Transporte de Sodio-Glucosa/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Aparato de Golgi/metabolismo , Humanos
4.
Oxid Med Cell Longev ; 2019: 8156592, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800210

RESUMEN

Ascorbate requiring Fe2+/2-oxoglutarate-dependent dioxygenases located in the nucleoplasm have been shown to participate in epigenetic regulation of gene expression via histone and DNA demethylation. Transport of dehydroascorbic acid is impaired in the endomembranes of fibroblasts from arterial tortuosity syndrome (ATS) patients, due to the mutation in the gene coding for glucose transporter GLUT10. We hypothesized that altered nuclear ascorbate concentration might be present in ATS fibroblasts, affecting dioxygenase activity and DNA demethylation. Therefore, our aim was to characterize the subcellular distribution of vitamin C, the global and site-specific changes in 5-methylcytosine and 5-hydroxymethylcytosine levels, and the effect of ascorbate supplementation in control and ATS fibroblast cultures. Diminished nuclear accumulation of ascorbate was found in ATS fibroblasts upon ascorbate or dehydroascorbic acid addition. Analyzing DNA samples of cultured fibroblasts from controls and ATS patients, a lower global 5-hydroxymethylcytosine level was found in ATS fibroblasts, which could not be significantly modified by ascorbate addition. Investigation of the (hydroxy)methylation status of specific regions in six candidate genes related to ascorbate metabolism and function showed that ascorbate addition could stimulate hydroxymethylation and active DNA demethylation at the PPAR-γ gene region in control fibroblasts only. The altered DNA hydroxymethylation patterns in patient cells both at the global level and at specific gene regions accompanied with decreased nuclear accumulation of ascorbate suggests the epigenetic role of vitamin C in the pathomechanism of ATS. The present findings represent the first example for the role of vitamin C transport in epigenetic regulation suggesting that ATS is a compartmentalization disease.


Asunto(s)
Arterias/anomalías , Ácido Ascórbico/metabolismo , Núcleo Celular/metabolismo , Metilación de ADN/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Genoma Humano , Inestabilidad de la Articulación/genética , Enfermedades Cutáneas Genéticas/genética , Malformaciones Vasculares/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Células Cultivadas , Epigénesis Genética , Humanos , Modelos Biológicos , PPAR gamma/genética , PPAR gamma/metabolismo
5.
Int J Mol Sci ; 18(8)2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28829359

RESUMEN

GLUT10 belongs to a family of transporters that catalyze the uptake of sugars/polyols by facilitated diffusion. Loss-of-function mutations in the SLC2A10 gene encoding GLUT10 are responsible for arterial tortuosity syndrome (ATS). Since subcellular distribution of the transporter is dubious, we aimed to clarify the localization of GLUT10. In silico GLUT10 localization prediction suggested its presence in the endoplasmic reticulum (ER). Immunoblotting showed the presence of GLUT10 protein in the microsomal, but not in mitochondrial fractions of human fibroblasts and liver tissue. An even cytosolic distribution with an intense perinuclear decoration of GLUT10 was demonstrated by immunofluorescence in human fibroblasts, whilst mitochondrial markers revealed a fully different decoration pattern. GLUT10 decoration was fully absent in fibroblasts from three ATS patients. Expression of exogenous, tagged GLUT10 in fibroblasts from an ATS patient revealed a strict co-localization with the ER marker protein disulfide isomerase (PDI). The results demonstrate that GLUT10 is present in the ER.


Asunto(s)
Arterias/anomalías , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Inestabilidad de la Articulación/metabolismo , Enfermedades Cutáneas Genéticas/metabolismo , Malformaciones Vasculares/metabolismo , Arterias/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Espacio Intracelular/metabolismo , Inestabilidad de la Articulación/genética , Microsomas/metabolismo , Unión Proteica , Transporte de Proteínas , Enfermedades Cutáneas Genéticas/genética , Malformaciones Vasculares/genética
6.
FEBS Lett ; 590(11): 1630-40, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27153185

RESUMEN

Loss-of-function mutations in the gene encoding GLUT10 are responsible for arterial tortuosity syndrome (ATS), a rare connective tissue disorder. In this study GLUT10-mediated dehydroascorbic acid (DAA) transport was investigated, supposing its involvement in the pathomechanism. GLUT10 protein produced by in vitro translation and incorporated into liposomes efficiently transported DAA. Silencing of GLUT10 decreased DAA transport in immortalized human fibroblasts whose plasma membrane was selectively permeabilized. Similarly, the transport of DAA through endomembranes was markedly reduced in fibroblasts from ATS patients. Re-expression of GLUT10 in patients' fibroblasts restored DAA transport activity. The present results demonstrate that GLUT10 is a DAA transporter and DAA transport is diminished in the endomembranes of fibroblasts from ATS patients.


Asunto(s)
Arterias/anomalías , Ácido Deshidroascórbico/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Inestabilidad de la Articulación/genética , Enfermedades Cutáneas Genéticas/genética , Malformaciones Vasculares/genética , Ácido Ascórbico/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/farmacología
7.
Biochim Biophys Acta ; 1843(9): 1909-16, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24907663

RESUMEN

Beyond its general role as antioxidant, specific functions of ascorbate are compartmentalized within the eukaryotic cell. The list of organelle-specific functions of ascorbate has been recently expanded with the epigenetic role exerted as a cofactor for DNA and histone demethylases in the nucleus. Compartmentation necessitates the transport through intracellular membranes; members of the GLUT family and sodium-vitamin C cotransporters mediate the permeation of dehydroascorbic acid and ascorbate, respectively. Recent observations show that increased consumption and/or hindered entrance of ascorbate in/to a compartment results in pathological alterations partially resembling to scurvy, thus diseases of ascorbate compartmentation can exist. The review focuses on the reactions and transporters that can modulate ascorbate concentration and redox state in three compartments: endoplasmic reticulum, mitochondria and nucleus. By introducing the relevant experimental and clinical findings we make an attempt to coin the term of ascorbate compartmentation disease.


Asunto(s)
Ácido Ascórbico/metabolismo , Compartimento Celular , Enfermedad , Animales , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Orgánulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...