Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
JMIR Hum Factors ; 11: e47991, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206666

RESUMEN

BACKGROUND: Viscoelastic hemostatic assays, such as rotational thromboelastometry (ROTEM) or thromboelastography, enable prompt diagnosis and accelerate targeted treatment. However, the complex interpretation of the results remains challenging. Visual Clot-a situation awareness-based visualization technology-was developed to assist clinicians in interpreting viscoelastic tests. OBJECTIVE: Following a previous high-fidelity simulation study, we analyzed users' perceptions of the technology, to identify its strengths and limitations from clinicians' perspectives. METHODS: This is a mixed qualitative-quantitative study consisting of interviews and a survey. After solving coagulation scenarios using Visual Clot in high-fidelity simulations, we interviewed anesthesia personnel about the perceived advantages and disadvantages of the new tool. We used a template approach to identify dominant themes in interview responses. From these themes, we defined 5 statements, which were then rated on Likert scales in a questionnaire. RESULTS: We interviewed 77 participants and 23 completed the survey. We identified 9 frequently mentioned topics by analyzing the interview responses. The most common themes were "positive design features," "intuitive and easy to learn," and "lack of a quantitative component." In the survey, 21 respondents agreed that Visual Clot is easy to learn and 16 respondents stated that a combination of Visual Clot and ROTEM would help them manage complex hemostatic situations. CONCLUSIONS: A group of anesthesia care providers found Visual Clot well-designed, intuitive, and easy to learn. Participants highlighted its usefulness in emergencies, especially for clinicians inexperienced in coagulation management. However, the lack of quantitative information is an area for improvement.


Asunto(s)
Anestesia , Hemostáticos , Enseñanza Mediante Simulación de Alta Fidelidad , Trombosis , Humanos , Coagulación Sanguínea , Clotrimazol
2.
Br J Anaesth ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38177005

RESUMEN

BACKGROUND: Anaesthesia contributes substantially to the environmental impact of healthcare. To reduce the ecological footprint of anaesthesia, a set of sustainability interventions was implemented in the University Hospital Zurich, Switzerland. This study evaluates the environmental and economic implications of these interventions. METHODS: This was a single-centre retrospective observational study. We analysed the environmental impact and financial implications of changes in sevoflurane, desflurane, propofol, and plastic consumption over 2 yr (April 2021 to March 2023). The study included pre-implementation, implementation, and post-implementation phases. RESULTS: After implementation of sustainability measures, desflurane use was eliminated, there was a decrease in the consumption of sevoflurane from a median (inter-quartile range) of 25 (14-39) ml per case to 11 (6-22) ml per case (P<0.0001). Propofol consumption increased from 250 (150-721) mg per case to 743 (370-1284) mg per case (P<0.0001). Use of plastics changed: in the first quarter analysed, two or more infusion syringes were used in 62% of cases, compared with 74% of cases in the last quarter (P<0.0001). Two or more infusion lines were used in 58% of cases in the first quarter analysed, compared with 68% of cases in the last quarter (P<0.0001). This resulted in an 81% reduction in overall environmental impact from 3 (0-7) to 1 (0-3) CO2 equivalents in kg per case (P<0.0001). The costs during the final study phase were 11% lower compared with those in the initial phase: from 25 (13-41) to 21 (14-31) CHF (Swiss francs) per case (P<0.0001). CONCLUSIONS: Implementing sustainable anaesthesia interventions can significantly reduce the environmental impact and cost of anaesthesia.

3.
Diagnostics (Basel) ; 13(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958287

RESUMEN

Visual Patient Avatar ICU is an innovative approach to patient monitoring, enhancing the user's situation awareness in intensive care settings. It dynamically displays the patient's current vital signs using changes in color, shape, and animation. The technology can also indicate patient-inserted devices, such as arterial lines, central lines, and urinary catheters, along with their insertion locations. We conducted an international, multi-center study using a sequential qualitative-quantitative design to evaluate users' perception of Visual Patient Avatar ICU among physicians and nurses. Twenty-five nurses and twenty-five physicians from the ICU participated in the structured interviews. Forty of them completed the online survey. Overall, ICU professionals expressed a positive outlook on Visual Patient Avatar ICU. They described Visual Patient Avatar ICU as a simple and intuitive tool that improved information retention and facilitated problem identification. However, a subset of participants expressed concerns about potential information overload and a sense of incompleteness due to missing exact numerical values. These findings provide valuable insights into user perceptions of Visual Patient Avatar ICU and encourage further technology development before clinical implementation.

4.
BMC Anesthesiol ; 23(1): 377, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978425

RESUMEN

BACKGROUND: The world faces a significant global health threat - climate change, which makes creating more environmentally sustainable healthcare systems necessary. As a resource-intensive specialty, anesthesiology contributes to a substantial fraction of healthcare's environmental impact. This alarming situation invites us to reconsider the ecological health determinants and calls us to action. METHODS: We conducted a single-center qualitative study involving an online survey to explore the environmental sustainability from anesthesia providers' perspectives in a center implementing internal environmentally-sustainable anesthesia guidelines. We asked care providers how they perceive the importance of environmental issues in their work; the adverse effects they see on ecological sustainability in anesthesia practice; what measures they take to make anesthesia more environmentally friendly; what barriers they face in trying to do so; and why they are unable to adopt ecologically friendly practices in some instances. Using a thematic analysis approach, we identified dominating themes in participants' responses. RESULTS: A total of 62 anesthesia providers completed the online survey. 89% of the participants stated that environmental sustainability is essential in their work, and 95% reported that they implement measures to make their practice greener. A conscious choice of anesthetics was identified as the most common step the respondents take to reduce the environmental impact of anesthesia. Waste production and improper waste management was the most frequently mentioned anesthesia-associated threat to the environment. Lacking knowledge/teaching in sustainability themes was recognized as a crucial barrier to achieving ecology goals. CONCLUSIONS: Sustainable anesthesia initiatives have the potential to both encourage engagement among anesthesia providers and raise awareness of this global issue. These findings inspire opportunities for action in sustainable anesthesia and broaden the capacity to decrease the climate impact of health care.


Asunto(s)
Anestesia , Anestésicos , Humanos , Cambio Climático
5.
Diagnostics (Basel) ; 13(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37835847

RESUMEN

Blood gas analysis plays a central role in modern medicine. Advances in technology have expanded the range of available parameters and increased the complexity of their interpretation. By applying user-centered design principles, it is possible to reduce the cognitive load associated with interpreting blood gas analysis. In this international, multicenter study, we explored anesthesiologists' perspectives on Visual Blood, a novel visualization technique for presenting blood gas analysis results. We conducted interviews with participants following two computer-based simulation studies, the first utilizing virtual reality (VR) (50 participants) and the second without VR (70 participants). Employing the template approach, we identified key themes in the interview responses and formulated six statements, which were rated using Likert scales from 1 (strongly disagree) to 5 (strongly agree) in an online questionnaire. The most frequently mentioned theme was the positive usability features of Visual Blood. The online survey revealed that participants found Visual Blood to be an intuitive method for interpreting blood gas analysis (median 4, interquartile range (IQR) 4-4, p < 0.001). Participants noted that minimal training was required to effectively learn how to interpret Visual Blood (median 4, IQR 4-4, p < 0.001). However, adjustments are necessary to reduce visual overload (median 4, IQR 2-4, p < 0.001). Overall, Visual Blood received a favorable response. The strengths and weaknesses derived from these data will help optimize future versions of Visual Blood to improve the presentation of blood gas analysis results.

6.
Crit Care ; 27(1): 254, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37381008

RESUMEN

Medical technology innovation has improved patient monitoring in perioperative and intensive care medicine and continuous improvement in the technology is now a central focus in this field. Because data density increases with the number of parameters captured by patient-monitoring devices, its interpretation has become more challenging. Therefore, it is necessary to support clinicians in managing information overload while improving their awareness and understanding about the patient's health status. Patient monitoring has almost exclusively operated on the single-sensor-single-indicator principle-a technology-centered way of presenting data in which specific parameters are measured and displayed individually as separate numbers and waves. An alternative is user-centered medical visualization technology, which integrates multiple pieces of information (e.g., vital signs), derived from multiple sensors into a single indicator-an avatar-based visualization-that is a meaningful representation of the real-world situation. Data are presented as changing shapes, colors, and animation frequencies, which can be perceived, integrated, and interpreted much more efficiently than other formats (e.g., numbers). The beneficial effects of these technologies have been confirmed in computer-based simulation studies; visualization technologies improved clinicians' situation awareness by helping them effectively perceive and verbalize the underlying medical issue, while improving diagnostic confidence and reducing workload. This review presents an overview of the scientific results and the evidence for the validity of these technologies.


Asunto(s)
Unidades de Cuidados Intensivos , Monitoreo Fisiológico , Tecnología , Humanos , Monitoreo Fisiológico/tendencias , Tecnología/tendencias , Seguridad del Paciente , Medicina Perioperatoria , Concienciación
7.
Sci Rep ; 13(1): 5908, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041316

RESUMEN

Patient monitoring is the foundation of intensive care medicine. High workload and information overload can impair situation awareness of staff, thus leading to loss of important information about patients' conditions. To facilitate mental processing of patient monitoring data, we developed the Visual-Patient-avatar Intensive Care Unit (ICU), a virtual patient model animated from vital signs and patient installation data. It incorporates user-centred design principles to foster situation awareness. This study investigated the avatar's effects on information transfer measured by performance, diagnostic confidence and perceived workload. This computer-based study compared Visual-Patient-avatar ICU and conventional monitor modality for the first time. We recruited 25 nurses and 25 physicians from five centres. The participants completed an equal number of scenarios in both modalities. Information transfer, as the primary outcome, was defined as correctly assessing vital signs and installations. Secondary outcomes included diagnostic confidence and perceived workload. For analysis, we used mixed models and matched odds ratios. Comparing 250 within-subject cases revealed that Visual-Patient-avatar ICU led to a higher rate of correctly assessed vital signs and installations [rate ratio (RR) 1.25; 95% CI 1.19-1.31; P < 0.001], strengthened diagnostic confidence [odds ratio (OR) 3.32; 95% CI 2.15-5.11, P < 0.001] and lowered perceived workload (coefficient - 7.62; 95% CI - 9.17 to - 6.07; P < 0.001) than conventional modality. Using Visual-Patient-avatar ICU, participants retrieved more information with higher diagnostic confidence and lower perceived workload compared to the current industry standard monitor.


Asunto(s)
Unidades de Cuidados Intensivos , Carga de Trabajo , Humanos , Monitoreo Fisiológico , Concienciación , Computadores
8.
Praxis (Bern 1994) ; 111(13): 749-753, 2022.
Artículo en Alemán | MEDLINE | ID: mdl-36221968

RESUMEN

The Use of Checklists in Medicine Abstract. This mini-review highlights the success story of checklists in perioperative medicine. It provides a background to the introduction of medical checklists, the WHO Guidelines for Safe Surgery, and the most important checklist studies. We outline the advantages of checklists and possible difficulties in their implementation and provide examples of various checklists. We come to the conclusion that checklists are helpful and that their best potential benefit depends on their correct implementation.


Asunto(s)
Lista de Verificación , Medicina , Humanos
9.
Diagnostics (Basel) ; 12(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36010187

RESUMEN

Decision confidence­the subjective belief to have made the right decision­is central in planning actions in a complex environment such as the medical field. It is unclear by which factors it is influenced. We analyzed a pooled data set of eight studies and performed a multicenter online survey assessing anesthesiologists' opinions on decision confidence. By applying mixed models and using multiple imputation to determine the effect of missing values from the dataset on the results, we investigated how task performance, perceived workload, the utilization of user-centered medical diagnostic devices, job, work experience, and gender affected decision confidence. The odds of being confident increased with better task performance (OR: 1.27, 95% CI: 0.94 to 1.7; p = 0.12; after multiple imputation OR: 3.19, 95% CI: 2.29 to 4.45; p < 0.001) and when user-centered medical devices were used (OR: 5.01, 95% CI: 3.67 to 6.85; p < 0.001; after multiple imputation OR: 3.58, 95% CI: 2.65 to 4.85; p < 0.001). The odds of being confident decreased with higher perceived workload (OR: 0.94, 95% CI: 0.93 to 0.95; p < 0.001; after multiple imputation, OR: 0.94, 95% CI: 0.93 to 0.95; p < 0.001). Other factors, such as gender, job, or professional experience, did not affect decision confidence. Most anesthesiologists who participated in the online survey agreed that task performance (25 of 30; 83%), perceived workload (24 of 30; 80%), work experience (28 of 30; 93%), and job (21 of 30; 70%) influence decision confidence. Improved task performance, lower perceived workload, and user-centered design in medical equipment enhanced the decision confidence of anesthesia providers.

10.
Diagnostics (Basel) ; 12(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626425

RESUMEN

As the interpretation of viscoelastic coagulation test results remains challenging, we created Visual Clot, an animated blood clot aiming to facilitate raw rotational thromboelastometry (ROTEM) parameters. This study investigated anesthesia personnel's cognitive processing in managing simulated bleeding scenarios using eye-tracking technology. This multicenter, international, computer-based study across five large, central European hospitals included 35 participants with minimal to no prior experience interpreting viscoelastic test results. Using eye-tracking technology and an iPad tagged with quick response codes, we defined the time to treatment decision and the time on screen surface in seconds of correctly solved scenarios as our outcomes. The median time to treatment decision was 52 s for Visual Clot and 205 s for ROTEM (p < 0.0001). The probability of solving the scenario correctly was more than 8 times higher when using Visual Clot than when using ROTEM (Hazard ratio [HR] 8.54, 95% CI from 6.5 to 11.21; p < 0.0001). Out of 194 correctly answered scenarios of participants with the eye-tracker, 154 (79.4%) were solved with Visual Clot and 40 (20.6%) with ROTEM. Participants spent on average 30 s less looking at the screen surface with Visual Clot compared to ROTEM (Coefficient −30.74 s, 95% CI from −39.27 to −22.27; p < 0.0001). For a comparison of the two modalities in terms of information transfer, we calculated the percentage of time on the screen surface of the overall time to treatment decision, which with Visual Clot was 14 percentage points shorter than with ROTEM (Coefficient −14.55, 95% CI from −20.05 to −9.12; p < 0.0001). Visual Clot seems to improve perception and detection of coagulopathies and leads to earlier initiation of the appropriate treatment. In a high-pressure working environment such as the operating and the resuscitation room, correct and timely decisions regarding bleeding management may have a relevant impact on patients' outcomes.

11.
JMIR Serious Games ; 10(1): e35642, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35172958

RESUMEN

BACKGROUND: Inadequate situational awareness accounts for two-thirds of preventable complications in anesthesia. An essential tool for situational awareness in the perioperative setting is the patient monitor. However, the conventional monitor has several weaknesses. Avatar-based patient monitoring may address these shortcomings and promote situation awareness, a prerequisite for good decision making. OBJECTIVE: The spatial distribution of visual attention is a fundamental process for achieving adequate situation awareness and thus a potential quantifiable surrogate for situation awareness. Moreover, measuring visual attention with a head-mounted eye-tracker may provide insights into usage and acceptance of the new avatar-based patient monitoring modality. METHODS: This prospective eye-tracking study compared anesthesia providers' visual attention on conventional and avatar-based patient monitors during simulated critical anesthesia events. We defined visual attention, measured as fixation count and dwell time, as our primary outcome. We correlated visual attention with the potential confounders: performance in managing simulated critical anesthesia events (task performance), work experience, and profession. We used mixed linear models to analyze the results. RESULTS: Fifty-two teams performed 156 simulations. After a manual quality check of the eye-tracking footage, we excluded 57 simulations due to technical problems and quality issues. Participants had a median of 198 (IQR 92.5-317.5) fixations on the patient monitor with a median dwell time of 30.2 (IQR 14.9-51.3) seconds. We found no significant difference in participants' visual attention when using avatar-based patient monitoring or conventional patient monitoring. However, we found that with each percentage point of better task performance, the number of fixations decreased by about 1.39 (coefficient -1.39; 95% CI -2.44 to -0.34; P=.02), and the dwell time diminished by 0.23 seconds (coefficient -0.23; 95% CI: -0.4 to -0.06; P=.01). CONCLUSIONS: Using eye tracking, we found no significant difference in visual attention when anesthesia providers used avatar-based monitoring or conventional patient monitoring in simulated critical anesthesia events. However, we identified visual attention in conjunction with task performance as a surrogate for situational awareness.

12.
JMIR Hum Factors ; 9(1): e34677, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35119375

RESUMEN

BACKGROUND: Patient safety during anesthesia is crucially dependent on the monitoring of vital signs. However, the values obtained must also be perceived and correctly classified by the attending care providers. To facilitate these processes, we developed Visual-Patient-avatar, an animated virtual model of the monitored patient, which innovatively presents numerical and waveform data following user-centered design principles. After a high-fidelity simulation study, we analyzed the participants' perceptions of 3 different monitor modalities, including this newly introduced technique. OBJECTIVE: The aim of this study was to collect and evaluate participants' opinions and experiences regarding 3 different monitor modalities, which are Visual-Patient-avatar, Split Screen (avatar and Conventional monitor alongside each other), and Conventional monitor after using them during simulated critical anesthetic events. METHODS: This study was a researcher-initiated, single-center, semiquantitative study. We asked 92 care providers right after finishing 3 simulated emergency scenarios about their positive and negative opinions concerning the different monitor modalities. We processed the field notes obtained and derived the main categories and corresponding subthemes following qualitative research methods. RESULTS: We gained a total of 307 statements. Through a context-based analysis, we identified the 3 main categories of "Visual-Patient-avatar," "Split Screen," and "Conventional monitor" and divided them into 11 positive and negative subthemes. We achieved substantial interrater reliability in assigning the statements to 1 of the topics. Most of the statements concerned the design and usability features of the avatar or the Split Screen mode. CONCLUSIONS: This study semiquantitatively reviewed the clinical applicability of the Visual-Patient-avatar technique in a high-fidelity simulation study and revealed the strengths and limitations of the avatar only and Split Screen modality. In addition to valuable suggestions for improving the design, the requirement for training prior to clinical implementation was emphasized. The responses to the Split Screen suggest that this symbiotic modality generates better situation awareness in combination with numerical data and accurate curves. As a subsequent development step, a real-life introduction study is planned, where we will test the avatar in Split Screen mode under actual clinical conditions.

13.
Diagnostics (Basel) ; 12(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35204644

RESUMEN

Visual-Patient-avatar, an avatar-based visualisation of patient monitoring, is a newly developed technology aiming to promote situation awareness through user-centred design. Before the technology's introduction into clinical practice, the initial design used to validate the concept had to undergo thorough examination and adjustments where necessary. This mixed qualitative and quantitative study, consisting of three different study parts, aimed to create a design with high user acceptance regarding perceived professionalism and potential for identification while maintaining its original functionality. The first qualitative part was based on structured interviews and explored anaesthesia personnel's first impressions regarding the original design. Recurrent topics were identified using inductive coding, participants' interpretations of the vital sign visualisations analysed and design modifications derived. The second study part consisted of a redesign process, in which the visualisations were adapted according to the results of the first part. In a third, quantitative study part, participants rated Likert scales about Visual-Patient-avatar's appearance and interpreted displayed vital signs in a computer-based survey. The first, qualitative study part included 51 structured interviews. Twenty-eight of 51 (55%) participants mentioned the appearance of Visual-Patient-avatar. In 23 of 51 (45%) interviews, 26 statements about the general impression were identified with a balanced count of positive (14 of 26) and negative (12 of 26) comments. The analysis of vital sign visualisations showed deficits in several vital sign visualisations, especially central venous pressure. These findings were incorporated into part two, the redesign of Visual-Patient-avatar. In the subsequent quantitative analysis of study for part three, 20 of 30 (67%) new participants agreed that the avatar looks professional enough for medical use. Finally, the participants identified 73% (435 of 600 cases) of all vital sign visualisations intuitively correctly without prior instruction. This study succeeded in improving the original design with good user acceptance and a reasonable degree of intuitiveness of the new, revised design. Furthermore, the study identified aspects relevant for the release of Visual-Patient-avatar, such as the requirement for providing at least some training, despite the design's intuitiveness. The results of this study will guide further research and improvement of the technology. The study provides a link between Visual-Patient-avatar as a scientific concept and as an actual product from a cognitive engineering point of view, and may serve as an example of methods to study the designs of technologies in similar contexts.

14.
Br J Anaesth ; 127(5): 769-777, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34454710

RESUMEN

BACKGROUND: Acoustic alarms in medical devices are vital for patient safety. State-of-the-art patient monitoring alarms are indistinguishable and contribute to alarm fatigue. There are two promising new sound modalities for vital sign alarms. Auditory icons convey alarms as brief metaphorical sounds, and voice alerts transmit information using a clear-spoken language. We compared how reliably healthcare professionals identified alarms using these two modalities. METHODS: This investigator-initiated computer-based multicentre simulation study included 28 anaesthesia providers who were asked to identify vital sign alarms in randomised order, once with voice alerts and once with auditory icons. We further assessed time to decision, diagnostic confidence, and perceived helpfulness. We analysed the results using mixed models, adjusted for possible confounders. RESULTS: We assessed 14 alarms for each modality, resulting in 392 comparisons across all participants. Compared with auditory icons, healthcare providers had 58 times higher odds of correctly identifying alarms using voice alerts (odds ratio 58.0; 95% confidence interval [CI]: 25.1-133.6; P<0.001), made their decisions about 14 s faster (coefficient -13.9; 95% CI: -15.8 to -12.1 s; P<0.001), perceived higher diagnostic confidence (100% [392 of 392] vs 43% [169 of 392; P<0.001]), and rated voice alerts as more helpful (odds ratio 138.2; 95% CI: 64.9-294.1; P<0.001). The participants were able to identify significantly higher proportions of alarms with voice alerts (98.5%; P<0.001) and auditory icons (54.1%; P<0.001) compared with state-of-the-art alarms (17.9%). CONCLUSIONS: Voice alerts were superior to auditory icons, and both were superior to current state-of-the-art auditory alarms. These findings demonstrate the potential that voice alerts hold for patient monitoring.


Asunto(s)
Acústica , Alarmas Clínicas , Monitoreo Fisiológico/métodos , Voz , Adulto , Percepción Auditiva , Simulación por Computador , Toma de Decisiones , Diseño de Equipo , Femenino , Personal de Salud/estadística & datos numéricos , Humanos , Masculino , Factores de Tiempo
15.
J Med Internet Res ; 23(5): e27124, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33843602

RESUMEN

BACKGROUND: Viscoelastic test-guided coagulation management has become increasingly important in assessing hemostasis. We developed Visual Clot, an animated, 3D blood clot that illustrates raw rotational thromboelastometry (ROTEM) parameters in a user-centered and situation awareness-oriented method. OBJECTIVE: This study aimed to evaluate the applicability of Visual Clot by examining its effects on users that are novices in viscoelastic-guided resuscitation. METHODS: We conducted an investigator-initiated, international, multicenter study between September 16, 2020, and October 6, 2020, in 5 tertiary care hospitals in central Europe. We randomly recruited medical students and inexperienced resident physicians without significant prior exposure to viscoelastic testing. The 7 participants per center managed 9 different ROTEM outputs twice, once as standard ROTEM tracings and once as the corresponding Visual Clot. We randomly presented the 18 viscoelastic cases and asked the participants for their therapeutic decisions. We assessed the performance, diagnostic confidence, and perceived workload in managing the tasks using mixed statistical models and adjusted for possible confounding factors. RESULTS: Analyzing a total of 630 results, we found that the participants solved more cases correctly (odds ratio [OR] 33.66, 95% CI 21.13-53.64; P<.001), exhibited more diagnostic confidence (OR 206.2, 95% CI 93.5-454.75; P<.001), and perceived less workload (coefficient -41.63; 95% CI -43.91 to -39.36; P<.001) using Visual Clot compared to using standard ROTEM tracings. CONCLUSIONS: This study emphasizes the practical benefit of presenting viscoelastic test results in a user-centered way. Visual Clot may allow inexperienced users to be involved in the decision-making process to treat bleeding-associated coagulopathy. The increased diagnostic confidence, diagnostic certainty, reduced workload, and positive user feedback associated with this visualization may promote the further adoption of viscoelastic methods in diverse health care settings.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Trombosis , Hemostasis , Humanos , Tecnología , Tromboelastografía
16.
Br J Anaesth ; 126(5): 1046-1054, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33879327

RESUMEN

BACKGROUND: Failures in situation awareness cause two-thirds of anaesthesia complications. Avatar-based patient monitoring may promote situation awareness in critical situations. METHODS: We conducted a prospective, randomised, high-fidelity simulation study powered for non-inferiority. We used video analysis to grade anaesthesia teams managing three 10 min emergency scenarios using three randomly assigned monitoring modalities: only conventional, only avatar, and split-screen showing both modalities side by side. The primary outcome was time to performance of critical tasks. Secondary outcomes were time to verbalisation of vital sign deviations and the correct cause of the emergency, perceived workload, and usability. We used mixed Cox and linear regression models adjusted for various potential confounders. The non-inferiority margin was 10%, or hazard ratio (HR) 0.9. RESULTS: We analysed 52 teams performing 154 simulations. For performance of critical tasks during a scenario, split-screen was non-inferior to conventional (HR=1.13; 95% confidence interval [CI], 0.96-1.33; not significant in test for superiority); the result for avatar was inconclusive (HR=0.98; 95% CI, 0.83-1.15). Avatar was associated with a higher probability for verbalisation of the cause of the emergency (HR=1.78; 95% CI, 1.13-2.81; P=0.012). We found no evidence for a monitor effect on perceived workload. Perceived usability was lower for avatar (coefficient=-23.0; 95% CI, -27.2 to -18.8; P<0.0001) and split-screen (-6.7; 95% CI, -10.9 to -2.4; P=0.002) compared with conventional. CONCLUSIONS: This study showed non-inferiority of split-screen compared with conventional monitoring for performance of critical tasks during anaesthesia crisis situations. The patient avatar improved verbalisation of the correct cause of the emergency. These results should be interpreted considering participants' minimal avatar but extensive conventional monitoring experience.


Asunto(s)
Anestesia/métodos , Enseñanza Mediante Simulación de Alta Fidelidad/métodos , Monitoreo Intraoperatorio/métodos , Interfaz Usuario-Computador , Anestesia/efectos adversos , Concienciación , Femenino , Humanos , Masculino , Estudios Prospectivos , Carga de Trabajo
17.
JMIR Serious Games ; 8(4): e19036, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33172834

RESUMEN

BACKGROUND: Viscoelastic tests enable a time-efficient analysis of coagulation properties. An important limitation of viscoelastic tests is the complicated presentation of their results in the form of abstract graphs with a multitude of numbers. We developed Visual Clot to simplify the interpretation of presented clotting information. This visualization technology applies user-centered design principles to create an animated model of a blood clot during the hemostatic cascade. In a previous simulation study, we found Visual Clot to double diagnostic accuracy, reduce time to decision making and perceived workload, and improve care providers' confidence. OBJECTIVE: This study aimed to investigate the opinions of physicians on Visual Clot technology. It further aimed to assess its strengths, limitations, and clinical applicability as a support tool for coagulation management. METHODS: This was a researcher-initiated, international, double-center, mixed qualitative-quantitative study that included the anesthesiologists and intensive care physicians who participated in the previous Visual Clot study. After the participants solved six coagulation scenarios using Visual Clot, we questioned them about the perceived pros and cons of this new tool. Employing qualitative research methods, we identified recurring answer patterns, and derived major topics and subthemes through inductive coding. Based on them, we defined six statements. The study participants later rated their agreement to these statements on five-point Likert scales in an online survey, which represented the quantitative part of this study. RESULTS: A total of 60 physicians participated in the primary Visual Clot study. Among these, 36 gave an interview and 42 completed the online survey. In total, eight different major topics were derived from the interview field note responses. The three most common topics were "positive design features" (29/36, 81%), "facilitates decision making" (17/36, 47%), and "quantification not made" (17/36, 47%). In the online survey, 93% (39/42) agreed to the statement that Visual Clot is intuitive and easy to learn. Moreover, 90% (38/42) of the participants agreed that they would like the standard result and Visual Clot displayed on the screen side by side. Furthermore, 86% (36/42) indicated that Visual Clot allows them to deal with complex coagulation situations more quickly. CONCLUSIONS: A group of anesthesia and intensive care physicians from two university hospitals in central Europe considered Visual Clot technology to be intuitive, easy to learn, and useful for decision making in situations of active bleeding. From the responses of these possible future users, Visual Clot appears to constitute an efficient and well-accepted way to streamline the decision-making process in viscoelastic test-based coagulation management.

19.
J Med Internet Res ; 22(9): e19472, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32780712

RESUMEN

BACKGROUND: Patient monitoring is indispensable in any operating room to follow the patient's current health state based on measured physiological parameters. Reducing workload helps to free cognitive resources and thus influences human performance, which ultimately improves the quality of care. Among the many methods available to assess perceived workload, the National Aeronautics and Space Administration Task Load Index (NASA-TLX) provides the most widely accepted tool. However, only few studies have investigated the validity of the NASA-TLX in the health care sector. OBJECTIVE: This study aimed to validate a modified version of the raw NASA-TLX in patient monitoring tasks by investigating its correspondence with expected lower and higher workload situations and its robustness against nonworkload-related covariates. This defines criterion validity. METHODS: In this pooled analysis, we evaluated raw NASA-TLX scores collected after performing patient monitoring tasks in four different investigator-initiated, computer-based, prospective, multicenter studies. All of them were conducted in three hospitals with a high standard of care in central Europe. In these already published studies, we compared conventional patient monitoring with two newly developed situation awareness-oriented monitoring technologies called Visual Patient and Visual Clot. The participants were resident and staff anesthesia and intensive care physicians, and nurse anesthetists with completed specialization qualification. We analyzed the raw NASA-TLX scores by fitting mixed linear regression models and univariate models with different covariates. RESULTS: We assessed a total of 1160 raw NASA-TLX questionnaires after performing specific patient monitoring tasks. Good test performance and higher self-rated diagnostic confidence correlated significantly with lower raw NASA-TLX scores and the subscores (all P<.001). Staff physicians rated significantly lower workload scores than residents (P=.001), whereas nurse anesthetists did not show any difference in the same comparison (P=.83). Standardized distraction resulted in higher rated total raw NASA-TLX scores (P<.001) and subscores. There was no gender difference regarding perceived workload (P=.26). The new visualization technologies Visual Patient and Visual Clot resulted in significantly lower total raw NASA-TLX scores and all subscores, including high self-rated performance, when compared with conventional monitoring (all P<.001). CONCLUSIONS: This study validated a modified raw NASA-TLX questionnaire for patient monitoring tasks. The scores obtained correctly represented the assumed influences of the examined covariates on the perceived workload. We reported high criterion validity. The NASA-TLX questionnaire appears to be a reliable tool for measuring subjective workload. Further research should focus on its applicability in a clinical setting.


Asunto(s)
Monitoreo Fisiológico/normas , Análisis y Desempeño de Tareas , Carga de Trabajo/psicología , Femenino , Humanos , Masculino , Estudios Prospectivos , Encuestas y Cuestionarios , Suiza , Carga de Trabajo/normas
20.
Sensors (Basel) ; 20(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283625

RESUMEN

Visual Patient technology is a situation awareness-oriented visualization technology that translates numerical and waveform patient monitoring data into a new user-centered visual language. Vital sign values are converted into colors, shapes, and rhythmic movements-a language humans can easily perceive and interpret-on a patient avatar model in real time. In this review, we summarize the current state of the research on the Visual Patient, including the technology, its history, and its scientific context. We also provide a summary of our primary research and a brief overview of research work on similar user-centered visualizations in medicine. In several computer-based studies under various experimental conditions, Visual Patient transferred more information per unit time, increased perceived diagnostic certainty, and lowered perceived workload. Eye tracking showed the technology worked because of the way it synthesizes and transforms vital sign information into new and logical forms corresponding to the real phenomena. The technology could be particularly useful for improving situation awareness in settings with high cognitive demand or when users must make quick decisions. This comprehensive review of Visual Patient research is the foundation for an evaluation of the technology in clinical applications, starting with a high-fidelity simulation study in early 2020.


Asunto(s)
Monitoreo Fisiológico/métodos , Concienciación , Movimientos Oculares , Frecuencia Cardíaca , Humanos , Reconocimiento de Normas Patrones Automatizadas , Frecuencia Respiratoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...