Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 93(9): 829-841, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36759256

RESUMEN

BACKGROUND: In tauopathies, brain regions with tau accumulation strongly correlate with clinical symptoms, and spreading of misfolded tau along neural network leads to disease progression. However, the underlying mechanisms by which tau proteins enter neurons during pathological propagation remain unclear. METHODS: To identify membrane receptors responsible for neuronal propagation of tau oligomers, we established a cell-based tau uptake assay and screened complementary DNA expression library. Tau uptake and propagation were analyzed in vitro and in vivo using a microfluidic device and stereotactic injection. The cognitive function of mice was assessed using behavioral tests. RESULTS: From a genome-wide cell-based functional screening, RAGE (receptor for advanced glycation end products) was isolated to stimulate the cellular uptake of tau oligomers. Rage deficiency reduced neuronal uptake of pathological tau prepared from rTg4510 mouse brains or cerebrospinal fluid from patients with Alzheimer's disease and slowed tau propagation between neurons cultured in a 3-chamber microfluidic device. RAGE levels were increased in the brains of rTg4510 mice and tau oligomer-treated neurons. Rage knockout decreased tau transmission in the brains of nontransgenic mice after injection with Alzheimer's disease patient-derived tau and ameliorated memory loss after injection with GFP-P301L-tau-AAV. Treatment of RAGE antagonist FPS-ZM1 blocked transsynaptic tau propagation and inflammatory responses and alleviated cognitive impairment in rTg4510 mice. CONCLUSIONS: These results suggest that in neurons and microglia, RAGE binds to pathological tau and facilitates neuronal tau pathology progression and behavioral deficits in tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Receptor para Productos Finales de Glicación Avanzada , Tauopatías , Proteínas tau , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Trastornos de la Memoria/metabolismo , Ratones Transgénicos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteínas tau/metabolismo , Tauopatías/metabolismo
2.
Cell Death Dis ; 13(5): 469, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585049

RESUMEN

The RAS-BRAF signaling is a major pathway of cell proliferation and their mutations are frequently found in human cancers. Adenylate kinase 2 (AK2), which modulates balance of adenine nucleotide pool, has been implicated in cell death and cell proliferation independently of its enzyme activity. Recently, the role of AK2 in tumorigenesis was in part elucidated in some cancer types including lung adenocarcinoma and breast cancer, but the underlying mechanism is not clear. Here, we show that AK2 is a BRAF-suppressor. In in vitro assays and cell model, AK2 interacted with BRAF and inhibited BRAF activity and downstream ERK phosphorylation. Energy-deprived conditions in cell model and the addition of AMP to cell lysates strengthened the AK2-BRAF interaction, suggesting that AK2 is involved in the regulation of BRAF activity in response to cell metabolic state. AMP facilitated the AK2-BRAF complex formation through binding to AK2. In a panel of HCC cell lines, AK2 expression was inversely correlated with ERK/MAPK activation, and AK2-knockdown or -knockout increased BRAF activity and promoted cell proliferation. Tumors from HCC patients showed low-AK2 protein expression and increased ERK activation compared to non-tumor tissues and the downregulation of AK2 was also verified by two microarray datasets (TCGA-LIHC and GSE14520). Moreover, AK2/BRAF interaction was abrogated by RAS activation in in vitro assay and cell model and in a mouse model of HRASG12V-driven HCC, and AK2 ablation promoted tumor growth and BRAF activity. AK2 also bound to BRAF inhibitor-insensitive BRAF mutants and attenuated their activities. These findings indicate that AK2 monitoring cellular AMP levels is indeed a negative regulator of BRAF, linking the metabolic status to tumor growth.


Asunto(s)
Adenosina Monofosfato , Adenilato Quinasa , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas B-raf , Adenosina Monofosfato/metabolismo , Adenilato Quinasa/metabolismo , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...