Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(22): 12207-12223, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37897354

RESUMEN

Following a DNA double strand break (DSB), several nucleases and helicases coordinate to generate single-stranded DNA (ssDNA) with 3' free ends, facilitating precise DNA repair by homologous recombination (HR). The same nucleases can act on stalled replication forks, promoting nascent DNA degradation and fork instability. Interestingly, some HR factors, such as CtIP and BRCA1, have opposite regulatory effects on the two processes, promoting end resection at DSB but inhibiting the degradation of nascent DNA on stalled forks. However, the reason why nuclease actions are regulated by different mechanisms in two DNA metabolism is poorly understood. We show that human HELQ acts as a DNA end resection regulator, with opposing activities on DNA end resection at DSBs and on stalled forks as seen for other regulators. Mechanistically, HELQ helicase activity is required for EXO1-mediated DSB end resection, while ssDNA-binding capacity of HELQ is required for its recruitment to stalled forks, facilitating fork protection and preventing chromosome aberrations caused by replication stress. Here, HELQ synergizes with CtIP but not BRCA1 or BRCA2 to protect stalled forks. These findings reveal an unanticipated role of HELQ in regulating DNA end resection at DSB and stalled forks, which is important for maintaining genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , Humanos , ADN Helicasas/genética , Reparación del ADN , Recombinación Homóloga/genética
2.
Med Mycol ; 60(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36240494

RESUMEN

The yeast SKI (superkiller) complex was originally identified from cells that were infected by the M 'killer' virus. Ski2, as the core of the SKI complex, is a cytoplasmic cofactor and regulator of RNA-degrading exosome. The putative RNA helicase Ski2 was highly conserved from yeast to animals and has been demonstrated to play a key role in the regulation of RNA surveillance, temperature sensitivity, and growth in several yeasts but not yet in Cryptococcus neoformans (C. neoformans). Here, we report the identification of a gene encoding an equivalent Ski2 protein, named SKI2, in the fungal pathogen C. neoformans. To obtain insights into the function of Ski2, we created a mutant strain, ski2Δ, with the CRISPR-Cas9 editing tool. Disruption of SKI2 impaired cell wall integrity. Further investigations revealed the defects of the ski2Δ mutant in resistance to osmotic stresses and extreme growth temperatures. However, significantly, the ability to undergo invasive growth under nutrient-depleted conditions was increased in the ski2Δ mutant. More importantly, our results showed that the ski2Δ mutant exhibited slightly lower virulence and severe susceptibility to anti-ribosomal drugs by comparison to the wild type, but it developed multidrug resistance to azoles and flucytosine. By constructing the double deletion strain ski2Δafr1Δ, we verified that increased Afr1 in ski2Δ contributed to the azole resistance, which might be influenced by nonclassical small interfering RNA. Our work suggests that Ski2 plays critical roles in drug resistance and regulation of gene transcription in the yeast pathogen C. neoformans.


Asunto(s)
Cryptococcus neoformans , Farmacorresistencia Fúngica , Proteínas Fúngicas , Azoles/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ARN Helicasas/metabolismo , Farmacorresistencia Fúngica/genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...