Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 13(1): 4918, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995799

RESUMEN

Considerable evidence supports the release of pathogenic aggregates of the neuronal protein α-Synuclein (αSyn) into the extracellular space. While this release is proposed to instigate the neuron-to-neuron transmission and spread of αSyn pathology in synucleinopathies including Parkinson's disease, the molecular-cellular mechanism(s) remain unclear. To study this, we generated a new mouse model to specifically immunoisolate neuronal lysosomes, and established a long-term culture model where αSyn aggregates are produced within neurons without the addition of exogenous fibrils. We show that neuronally generated pathogenic species of αSyn accumulate within neuronal lysosomes in mouse brains and primary neurons. We then find that neurons release these pathogenic αSyn species via SNARE-dependent lysosomal exocytosis. The released aggregates are non-membrane enveloped and seeding-competent. Additionally, we find that this release is dependent on neuronal activity and cytosolic Ca2+. These results propose lysosomal exocytosis as a central mechanism for the release of aggregated and degradation-resistant proteins from neurons.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Animales , Exocitosis , Lisosomas/metabolismo , Ratones , Neuronas/metabolismo , alfa-Sinucleína/metabolismo
3.
Cell Rep ; 39(2): 110675, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417693

RESUMEN

α-synuclein, ß-synuclein, and γ-synuclein are abundantly expressed proteins in the vertebrate nervous system. α-synuclein functions in neurotransmitter release by binding to and clustering synaptic vesicles and chaperoning SNARE-complex assembly. Pathologically, aggregates originating from soluble pools of α-synuclein are deposited into Lewy bodies in Parkinson's disease and related synucleinopathies. The functions of ß-synuclein and γ-synuclein in presynaptic terminals remain poorly studied. Using in vitro liposome binding studies, circular dichroism spectroscopy, immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments on isolated synaptic vesicles in combination with subcellular fractionation of brains from synuclein mouse models, we show that ß-synuclein and γ-synuclein have a reduced affinity toward synaptic vesicles compared with α-synuclein, and that heteromerization of ß-synuclein or γ-synuclein with α-synuclein results in reduced synaptic vesicle binding of α-synuclein in a concentration-dependent manner. Our data suggest that ß-synuclein and γ-synuclein are modulators of synaptic vesicle binding of α-synuclein and thereby reduce α-synuclein's physiological activity at the neuronal synapse.


Asunto(s)
Vesículas Sinápticas , alfa-Sinucleína , Animales , Ratones , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Sinucleína beta/metabolismo , gamma-Sinucleína/metabolismo
4.
EMBO Mol Med ; 13(1): e12354, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33332765

RESUMEN

Heterozygous de novo mutations in the neuronal protein Munc18-1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia, and tremor. No disease-modifying therapy exists to treat these disorders, and while chemical chaperones have been shown to alleviate neuronal dysfunction caused by missense mutations in Munc18-1, their required high concentrations and potential toxicity necessitate a Munc18-1-targeted therapy. Munc18-1 is essential for neurotransmitter release, and mutations in Munc18-1 have been shown to cause neuronal dysfunction via aggregation and co-aggregation of the wild-type protein, reducing functional Munc18-1 levels well below hemizygous levels. Here, we identify two pharmacological chaperones via structure-based drug design, that bind to wild-type and mutant Munc18-1, and revert Munc18-1 aggregation and neuronal dysfunction in vitro and in vivo, providing the first targeted treatment strategy for these severe pediatric encephalopathies.


Asunto(s)
Encefalopatías , Epilepsia , Ataxia/tratamiento farmacológico , Ataxia/genética , Niño , Heterocigoto , Humanos , Proteínas Munc18/genética
5.
Nat Struct Mol Biol ; 27(2): 192-201, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32042150

RESUMEN

Point mutations in cysteine string protein-α (CSPα) cause dominantly inherited adult-onset neuronal ceroid lipofuscinosis (ANCL), a rapidly progressing and lethal neurodegenerative disease with no treatment. ANCL mutations are proposed to trigger CSPα aggregation/oligomerization, but the mechanism of oligomer formation remains unclear. Here we use purified proteins, mouse primary neurons and patient-derived induced neurons to show that the normally palmitoylated cysteine string region of CSPα loses palmitoylation in ANCL mutants. This allows oligomerization of mutant CSPα via ectopic binding of iron-sulfur (Fe-S) clusters. The resulting oligomerization of mutant CSPα causes its mislocalization and consequent loss of its synaptic SNARE-chaperoning function. We then find that pharmacological iron chelation mitigates the oligomerization of mutant CSPα, accompanied by partial rescue of the downstream SNARE defects and the pathological hallmark of lipofuscin accumulation. Thus, the iron chelators deferiprone (L1) and deferoxamine (Dfx), which are already used to treat iron overload in humans, offer a new approach for treating ANCL.


Asunto(s)
Proteínas del Choque Térmico HSP40/genética , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Mutación Puntual , Agregación Patológica de Proteínas/genética , Animales , Células Cultivadas , Femenino , Células HEK293 , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Quelantes del Hierro/metabolismo , Lipoilación , Proteínas de la Membrana/metabolismo , Ratones , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Unión Proteica , Multimerización de Proteína
6.
Stem Cell Reports ; 10(4): 1208-1221, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29606613

RESUMEN

Loss of a cell's ability to terminally differentiate because of mutations is a selected genetic event in tumorigenesis. Genomic analyses of low-grade glioma have reported recurrent mutations of far upstream element-binding protein 1 (FUBP1). Here, we show that FUBP1 expression is dynamically regulated during neurogenesis and that its downregulation in neural progenitors impairs terminal differentiation and promotes tumorigenesis collaboratively with expression of IDH1R132H. Mechanistically, collaborative action between SRRM4 and FUBP1 is necessary for mini-exon splicing of the neurospecific LSD1+8a isoform. LSD1+8a was downregulated upon loss of FUBP1 in neural progenitors, thereby impairing terminal neuronal differentiation and maturation. Reinforcing LSD1+8a expression in FUBP1-downregulated neural progenitors restored terminal differentiation and suppressed tumorigenesis; hence, LSD1+8a is an obligatory effector of FUBP1-dependent neuronal differentiation. These findings establish a direct role for FUBP1 in neuronal differentiation and also explain its tumor-suppressor function in the nervous system.


Asunto(s)
Empalme Alternativo/genética , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Histona Demetilasas/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Animales Recién Nacidos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Exones/genética , Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo
7.
Aging Cell ; 17(1)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29178390

RESUMEN

Neurodegeneration resulting in cognitive and motor impairment is an inevitable consequence of aging. Little is known about the genetic regulation of this process despite its overriding importance in normal aging. Here, we identify the Forkhead Box O (FOXO) transcription factor 1, 3, and 4 isoforms as a guardian of neuronal integrity by inhibiting age-progressive axonal degeneration in mammals. FOXO expression progressively increased in aging human and mouse brains. The nervous system-specific deletion of Foxo transcription factors in mice accelerates aging-related axonal tract degeneration, which is followed by motor dysfunction. This accelerated neurodegeneration is accompanied by levels of white matter astrogliosis and microgliosis in middle-aged Foxo knockout mice that are typically only observed in very old wild-type mice and other aged mammals, including humans. Mechanistically, axonal degeneration in nerve-specific Foxo knockout mice is associated with elevated mTORC1 activity and accompanying proteotoxic stress due to decreased Sestrin3 expression. Inhibition of mTORC1 by rapamycin treatment mimics FOXO action and prevented axonal degeneration in Foxo knockout mice with accelerated nervous system aging. Defining this central role for FOXO in neuroprotection during mammalian aging offers an invaluable window into the aging process itself.


Asunto(s)
Axones/metabolismo , Factores de Transcripción Forkhead/metabolismo , Envejecimiento/metabolismo , Animales , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Transducción de Señal
8.
Macromolecules ; 46(15): 6374-6378, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24072937

RESUMEN

Core-shell conjugated polymer nanoparticles (CPNs) were fabricated by complexing a semi-flexible, primary amine-containing conjugated polymer (CP) with hyaluronic acid (HA). Flexibility introduced in the rigid rod conjugated backbone allows backbone reorganization to increase π-π interaction under ionic complexation, resulting in core-shell nanoparticles with a hydrophobic CP core wrapped with a HA shell. The core-shell nanoparticles exhibited no cellular toxicity and high cancer cell specificity with minimal binding to normal cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...