Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791405

RESUMEN

Apolipoprotein-CIII (apo-CIII) inhibits the clearance of triglycerides from circulation and is associated with an increased risk of diabetes complications. It exists in four main proteoforms: O-glycosylated variants containing either zero, one, or two sialic acids and a non-glycosylated variant. O-glycosylation may affect the metabolic functions of apo-CIII. We investigated the associations of apo-CIII glycosylation in blood plasma, measured by mass spectrometry of the intact protein, and genetic variants with micro- and macrovascular complications (retinopathy, nephropathy, neuropathy, cardiovascular disease) of type 2 diabetes in a DiaGene study (n = 1571) and the Hoorn DCS cohort (n = 5409). Mono-sialylated apolipoprotein-CIII (apo-CIII1) was associated with a reduced risk of retinopathy (ß = -7.215, 95% CI -11.137 to -3.294) whereas disialylated apolipoprotein-CIII (apo-CIII2) was associated with an increased risk (ß = 5.309, 95% CI 2.279 to 8.339). A variant of the GALNT2-gene (rs4846913), previously linked to lower apo-CIII0a, was associated with a decreased prevalence of retinopathy (OR = 0.739, 95% CI 0.575 to 0.951). Higher apo-CIII1 levels were associated with neuropathy (ß = 7.706, 95% CI 2.317 to 13.095) and lower apo-CIII0a with macrovascular complications (ß = -9.195, 95% CI -15.847 to -2.543). In conclusion, apo-CIII glycosylation was associated with the prevalence of micro- and macrovascular complications of diabetes. Moreover, a variant in the GALNT2-gene was associated with apo-CIII glycosylation and retinopathy, suggesting a causal effect. The findings facilitate a molecular understanding of the pathophysiology of diabetes complications and warrant consideration of apo-CIII glycosylation as a potential target in the prevention of diabetes complications.


Asunto(s)
Apolipoproteína C-III , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Glicosilación , Masculino , Femenino , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Persona de Mediana Edad , Anciano , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/etiología , Polimorfismo de Nucleótido Simple , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/etiología
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834292

RESUMEN

Apolipoprotein-CIII (apo-CIII) is involved in triglyceride-rich lipoprotein metabolism and linked to beta-cell damage, insulin resistance, and cardiovascular disease. Apo-CIII exists in four main proteoforms: non-glycosylated (apo-CIII0a), and glycosylated apo-CIII with zero, one, or two sialic acids (apo-CIII0c, apo-CIII1 and apo-CIII2). Our objective is to determine how apo-CIII glycosylation affects lipid traits and type 2 diabetes prevalence, and to investigate the genetic basis of these relations with a genome-wide association study (GWAS) on apo-CIII glycosylation. We conducted GWAS on the four apo-CIII proteoforms in the DiaGene study in people with and without type 2 diabetes (n = 2318). We investigated the relations of the identified genetic loci and apo-CIII glycosylation with lipids and type 2 diabetes. The associations of the genetic variants with lipids were replicated in the Diabetes Care System (n = 5409). Rs4846913-A, in the GALNT2-gene, was associated with decreased apo-CIII0a. This variant was associated with increased high-density lipoprotein cholesterol and decreased triglycerides, while high apo-CIII0a was associated with raised high-density lipoprotein-cholesterol and triglycerides. Rs67086575-G, located in the IFT172-gene, was associated with decreased apo-CIII2 and with hypertriglyceridemia. In line, apo-CIII2 was associated with low triglycerides. On a genome-wide scale, we confirmed that the GALNT2-gene plays a major role i O-glycosylation of apolipoprotein-CIII, with subsequent associations with lipid parameters. We newly identified the IFT172/NRBP1 region, in the literature previously associated with hypertriglyceridemia, as involved in apolipoprotein-CIII sialylation and hypertriglyceridemia. These results link genomics, glycosylation, and lipid metabolism, and represent a key step towards unravelling the importance of O-glycosylation in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Hipertrigliceridemia , Humanos , Apolipoproteína C-III/genética , Apolipoproteínas C/genética , Diabetes Mellitus Tipo 2/genética , Glicosilación , Estudio de Asociación del Genoma Completo , Triglicéridos , HDL-Colesterol , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Transporte Vesicular/genética , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/genética
3.
Front Endocrinol (Lausanne) ; 14: 1081741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926036

RESUMEN

Aim: Rare genetic variants in the CUBN gene encoding the main albumin-transporter in the proximal tubule of the kidneys have previously been associated with microalbuminuria and higher urine albumin levels, also in diabetes. Sequencing studies in isolated proteinuria suggest that these variants might not affect kidney function, despite proteinuria. However, the relation of these CUBN missense variants to the estimated glomerular filtration rate (eGFR) is largely unexplored. We hereby broadly examine the associations between four CUBN missense variants and eGFRcreatinine in Europeans with Type 1 (T1D) and Type 2 Diabetes (T2D). Furthermore, we sought to deepen our understanding of these variants in a range of single- and aggregate- variant analyses of other kidney-related traits in individuals with and without diabetes mellitus. Methods: We carried out a genetic association-based linear regression analysis between four CUBN missense variants (rs141640975, rs144360241, rs45551835, rs1801239) and eGFRcreatinine (ml/min/1.73 m2, CKD-EPIcreatinine(2012), natural log-transformed) in populations with T1D (n ~ 3,588) or T2D (n ~ 31,155) from multiple European studies and in individuals without diabetes from UK Biobank (UKBB, n ~ 370,061) with replication in deCODE (n = 127,090). Summary results of the diabetes-group were meta-analyzed using the fixed-effect inverse-variance method. Results: Albeit we did not observe associations between eGFRcreatinine and CUBN in the diabetes-group, we found significant positive associations between the minor alleles of all four variants and eGFRcreatinine in the UKBB individuals without diabetes with rs141640975 being the strongest (Effect=0.02, PeGFR_creatinine=2.2 × 10-9). We replicated the findings for rs141640975 in the Icelandic non-diabetes population (Effect=0.026, PeGFR_creatinine=7.7 × 10-4). For rs141640975, the eGFRcreatinine-association showed significant interaction with albuminuria levels (normo-, micro-, and macroalbuminuria; p = 0.03). An aggregated genetic risk score (GRS) was associated with higher urine albumin levels and eGFRcreatinine. The rs141640975 variant was also associated with higher levels of eGFRcreatinine-cystatin C (ml/min/1.73 m2, CKD-EPI2021, natural log-transformed) and lower circulating cystatin C levels. Conclusions: The positive associations between the four CUBN missense variants and eGFR in a large population without diabetes suggests a pleiotropic role of CUBN as a novel eGFR-locus in addition to it being a known albuminuria-locus. Additional associations with diverse renal function measures (lower cystatin C and higher eGFRcreatinine-cystatin C levels) and a CUBN-focused GRS further suggests an important role of CUBN in the future personalization of chronic kidney disease management in people without diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Receptores de Superficie Celular , Insuficiencia Renal Crónica , Humanos , Albúminas , Albuminuria/genética , Creatinina , Cistatina C , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicaciones , Pueblo Europeo , Estudios de Asociación Genética , Tasa de Filtración Glomerular/genética , Proteinuria/genética , Insuficiencia Renal Crónica/genética , Receptores de Superficie Celular/genética
4.
Front Chem ; 9: 678883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026735

RESUMEN

Apolipoprotein-CIII (apo-CIII) is a glycoprotein involved in lipid metabolism and its levels are associated with cardiovascular disease risk. Apo-CIII sialylation is associated with improved plasma triglyceride levels and its glycosylation may have an effect on the clearance of triglyceride-rich lipoproteins by directing these particles to different metabolic pathways. Large-scale sample cohort studies are required to fully elucidate the role of apo-CIII glycosylation in lipid metabolism and associated cardiovascular disease. In this study, we revisited a high-throughput workflow for the analysis of intact apo-CIII by ultrahigh-resolution MALDI FT-ICR MS. The workflow includes a chemical oxidation step to reduce methionine oxidation heterogeneity and spectrum complexity. Sinapinic acid matrix was used to minimize the loss of sialic acids upon MALDI. MassyTools software was used to standardize and automate MS data processing and quality control. This method was applied on 771 plasma samples from individuals without diabetes allowing for an evaluation of the expression levels of apo-CIII glycoforms against a panel of lipid biomarkers demonstrating the validity of the method. Our study supports the hypothesis that triglyceride clearance may be regulated, or at least strongly influenced by apo-CIII sialylation. Interestingly, the association of apo-CIII glycoforms with triglyceride levels was found to be largely independent of body mass index. Due to its precision and throughput, the new workflow will allow studying the role of apo-CIII in the regulation of lipid metabolism in various disease settings.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32616483

RESUMEN

INTRODUCTION: Recent studies revealed N-glycosylation signatures of type 2 diabetes, inflammation and cardiovascular risk factors. Most people with diabetes use medication to reduce cardiovascular risk. The association of these medications with the plasma N-glycome is largely unknown. We investigated the associations of metformin, statin, ACE inhibitor/angiotensin II receptor blocker (ARB), sulfonylurea (SU) derivatives and insulin use with the total plasma N-glycome in type 2 diabetes. RESEARCH DESIGN AND METHODS: After enzymatic release from glycoproteins, N-glycans were measured by matrix-assisted laser desorption/ionization mass spectrometry in the DiaGene (n=1815) and Hoorn Diabetes Care System (n=1518) cohorts. Multiple linear regression was used to investigate associations with medication, adjusted for clinical characteristics. Results were meta-analyzed and corrected for multiple comparisons. RESULTS: Metformin and statins were associated with decreased fucosylation and increased galactosylation and sialylation in glycans unrelated to immunoglobulin G. Bisection was increased within diantennary fucosylated non-sialylated glycans, but decreased within diantennary fucosylated sialylated glycans. Only few glycans were associated with ACE inhibitor/ARBs, while none associated with insulin and SU derivative use. CONCLUSIONS: We conclude that metformin and statins associate with a total plasma N-glycome signature in type 2 diabetes. Further studies are needed to determine the causality of these relations, and future N-glycomic research should consider medication a potential confounder.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Metformina , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Proteínas Sanguíneas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glicosilación , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Metformina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...