Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Stem Cell Res Ther ; 10(1): 203, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286988

RESUMEN

BACKGROUND: Friedreich's ataxia (FRDA) is an autosomal recessive disease caused by a non-coding mutation in the first intron of the frataxin (FXN) gene that suppresses its expression. Compensatory hypertrophic cardiomyopathy, dilated cardiomyopathy, and conduction system abnormalities in FRDA lead to cardiomyocyte (CM) death and fibrosis, consequently resulting in heart failure and arrhythmias. Murine models have been developed to study disease pathology in the past two decades; however, differences between human and mouse physiology and metabolism have limited the relevance of animal studies in cardiac disease conditions. To bridge this gap, we aimed to generate species-specific, functional in vitro experimental models of FRDA using 2-dimensional (2D) and 3-dimensional (3D) engineered cardiac tissues from FXN-deficient human pluripotent stem cell-derived ventricular cardiomyocytes (hPSC-hvCMs) and to compare their contractile and electrophysiological properties with healthy tissue constructs. METHODS: Healthy control and FRDA patient-specific hPSC-hvCMs were derived by directed differentiation using a small molecule-based protocol reported previously. We engineered the hvCMs into our established human ventricular cardiac tissue strip (hvCTS) and human ventricular cardiac anisotropic sheet (hvCAS) models, and functional assays were performed on days 7-17 post-tissue fabrication to assess the electrophysiology and contractility of FRDA patient-derived and FXN-knockdown engineered tissues, in comparison with healthy controls. To further validate the disease model, forced expression of FXN was induced in FXN-deficient tissues to test if disease phenotypes could be rescued. RESULTS: Here, we report for the first time the generation of human engineered tissue models of FRDA cardiomyopathy from hPSCs: FXN-deficient hvCTS displayed attenuated developed forces (by 70-80%) compared to healthy controls. High-resolution optical mapping of hvCAS with reduced FXN expression also revealed electrophysiological defects consistent with clinical observations, including action potential duration prolongation and maximum capture frequency reduction. Interestingly, a clear positive correlation between FXN expression and contractility was observed (ρ > 0.9), and restoration of FXN protein levels by lentiviral transduction rescued contractility defects in FXN-deficient hvCTS. CONCLUSIONS: We conclude that human-based in vitro cardiac tissue models of FRDA provide a translational, disease-relevant biomimetic platform for the evaluation of novel therapeutics and to provide insight into FRDA disease progression.


Asunto(s)
Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Potenciales de Acción/fisiología , Cardiomiopatías/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Insuficiencia Cardíaca/metabolismo , Humanos , Frataxina
2.
Nat Commun ; 10(1): 2210, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101807

RESUMEN

The core machinery for de novo biosynthesis of iron-sulfur clusters (ISC), located in the mitochondria matrix, is a five-protein complex containing the cysteine desulfurase NFS1 that is activated by frataxin (FXN), scaffold protein ISCU, accessory protein ISD11, and acyl-carrier protein ACP. Deficiency in FXN leads to the loss-of-function neurodegenerative disorder Friedreich's ataxia (FRDA). Here the 3.2 Å resolution cryo-electron microscopy structure of the FXN-bound active human complex, containing two copies of the NFS1-ISD11-ACP-ISCU-FXN hetero-pentamer, delineates the interactions of FXN with other component proteins of the complex. FXN binds at the interface of two NFS1 and one ISCU subunits, modifying the local environment of a bound zinc ion that would otherwise inhibit NFS1 activity in complexes without FXN. Our structure reveals how FXN facilitates ISC production through stabilizing key loop conformations of NFS1 and ISCU at the protein-protein interfaces, and suggests how FRDA clinical mutations affect complex formation and FXN activation.


Asunto(s)
Liasas de Carbono-Azufre/ultraestructura , Ataxia de Friedreich/patología , Proteínas de Unión a Hierro/ultraestructura , Proteínas Hierro-Azufre/ultraestructura , Mitocondrias/ultraestructura , Liasas de Carbono-Azufre/aislamiento & purificación , Liasas de Carbono-Azufre/metabolismo , Microscopía por Crioelectrón , Ataxia de Friedreich/genética , Hierro/metabolismo , Proteínas de Unión a Hierro/aislamiento & purificación , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/aislamiento & purificación , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Modelos Moleculares , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Azufre/metabolismo , Zinc/metabolismo , Frataxina
3.
Medchemcomm ; 10(2): 209-220, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30881609

RESUMEN

The mitochondrial acyl carrier protein (human ACPM, yeast Acp1) is an essential mitochondrial protein. Through binding of nascent acyl chains on the serine (S112)-bound 4'-phosphopantetheine (4'-PP) cofactor, ACPM is involved in mitochondrial fatty acid synthesis and lipoic acid biogenesis. Recently, yeast Acp1 was found to interact with several mitochondrial complexes, including the iron-sulfur (Fe-S) cluster biosynthesis and respiratory complexes, via the binding to LYRM proteins, a family of proteins involved in assembly/stability of complexes. Importantly, the interaction of LYRM proteins with Acp1 was shown to be essential in maintaining integrity of mitochondrial complexes. In human, recent structures show that ACPM binding to LYRM proteins involves acyl chains attached to the 4'-PP cofactor. Here, we performed an detailed characterization of the mitochondrial interactome of human ACPM by mass spectrometry (MS) and demonstrate the crucial role of the 4'-PP cofactor in most of ACPM interactions. Specifically, we show that ACPM interacts with endogenous Fe-S cluster complex components through binding of the LYRM protein ISD11/LYRM4. Using knockdown experiments, we further determine that ACPM is essential for the stability of mitochondrial respiratory complexes I, II and III, as well as the Fe-S cluster biosynthesis complex. Finally, using native MS and a top-down MS approach, we show that C14, C16 and C18 3-keto-acyl chains on ACPM are implicated in binding to ISD11 through analysis of the recombinant ACPM-ISD11 complex. Taken together, our data provide novel understanding of the role of 4'-PP- and long acyl chains-dependent interactions in human ACPM function.

4.
Biochimie ; 152: 211-218, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30031876

RESUMEN

Human de novo iron-sulfur (Fe-S) assembly complex consists of cysteine desulfurase NFS1, accessory protein ISD11, acyl carrier protein ACP, scaffold protein ISCU, and allosteric activator frataxin (FXN). FXN binds the NFS1-ISD11-ACP-ISCU complex (SDAU), to activate the desulfurase activity and Fe-S cluster biosynthesis. In the absence of FXN, the NFS1-ISD11-ACP (SDA) complex was reportedly inhibited by binding of recombinant ISCU. Recent studies also reported a substitution at position Met141 on the yeast ISCU orthologue Isu, to Ile, Leu, Val, or Cys, could bypass the requirement of FXN for Fe-S cluster biosynthesis and cell viability. Here, we show that recombinant human ISCU binds zinc(II) ion, as previously demonstrated with the E. coli orthologue IscU. Surprisingly, the relative proportion between zinc-bound and zinc-depleted forms varies among purification batches. Importantly the presence of zinc in ISCU impacts SDAU desulfurase activity. Indeed, removal of zinc(II) ion from ISCU causes a moderate but significant increase in activity compared to SDA alone, and FXN can activate both zinc-depleted and zinc-bound forms of ISCU complexed to SDA. Taking into consideration the inhibition of desulfurase activity by zinc-bound ISCU, we characterized wild type ISCU and the M140I, M140L, and M140V variants under both zinc-bound and zinc-depleted conditions, and did not observe significant differences in the biochemical and biophysical properties between wild-type and variants. Importantly, in the absence of FXN, ISCU variants behaved like wild-type and did not stimulate the desulfurase activity of the SDA complex. This study therefore identifies an important regulatory role for zinc-bound ISCU in modulation of the human Fe-S assembly system in vitro and reports no 'FXN bypass' effect on mutations at position Met140 in human ISCU. Furthermore, this study also calls for caution in interpreting studies involving recombinant ISCU by taking into consideration the influence of the bound zinc(II) ion on SDAU complex activity.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo , Metionina/genética , Zinc/metabolismo , Regulación Alostérica , Sitios de Unión , Liasas de Carbono-Azufre/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/genética , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Frataxina
5.
J Med Chem ; 60(7): 3094-3108, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28257199

RESUMEN

The C-5 substituted 2,4-diaminoquinazoline RG3039 (compound 1), a member of a chemical series that was identified and optimized using an SMN2 promoter screen, prolongs survival and improves motor function in a mouse model of spinal muscular atrophy (SMA). It is a potent inhibitor of the mRNA decapping scavenger enzyme (DcpS), but the mechanism whereby DcpS inhibition leads to therapeutic benefit is unclear. Compound 1 is a dibasic lipophilic molecule that is predicted to accumulate in lysosomes. To understand if the in vivo efficacy is due to DcpS inhibition or other effects resulting from the physicochemical properties of the chemotype, we undertook structure based molecular design to identify DcpS inhibitors with improved physicochemical properties. Herein we describe the design, synthesis, and in vitro pharmacological characterization of these DcpS inhibitors along with the in vivo mouse CNS PK profile of PF-DcpSi (compound 24), one of the analogs found to be efficacious in SMA mouse model.


Asunto(s)
Diseño de Fármacos , Endorribonucleasas/antagonistas & inhibidores , Atrofia Muscular Espinal/tratamiento farmacológico , Quinazolinas/química , Quinazolinas/uso terapéutico , ARN Mensajero/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Células HEK293 , Humanos , Ratones , Simulación del Acoplamiento Molecular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Quinazolinas/farmacocinética , Quinazolinas/farmacología , ARN Mensajero/genética , Proteína 2 para la Supervivencia de la Neurona Motora
6.
Sci Rep ; 6: 20019, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26883577

RESUMEN

In Friedreich's ataxia (FRDA) patients, diminished frataxin (FXN) in sensory neurons is thought to yield the predominant pathology associated with disease. In this study, we demonstrate successful usage of RNA transcript therapy (RTT) as an exogenous human FXN supplementation strategy in vitro and in vivo, specifically to dorsal root ganglia (DRG). Initially, 293 T cells were transfected with codon optimized human FXN mRNA, which was translated to yield FXN protein. Importantly, FXN was rapidly processed into the mature functional form of FXN (mFXN). Next, FXN mRNA, in the form of lipid nanoparticles (LNPs), was administered intravenously in adult mice. Examination of liver homogenates demonstrated efficient FXN LNP uptake in hepatocytes and revealed that the mitochondrial maturation machinery had efficiently processed all FXN protein to mFXN in ~24 h in vivo. Remarkably, greater than 50% mFXN protein derived from LNPs was detected seven days after intravenous administration of FXN LNPs, suggesting that the half-life of mFXN in vivo exceeds one week. Moreover, when FXN LNPs were delivered by intrathecal administration, we detected recombinant human FXN protein in DRG. These observations provide the first demonstration that RTT can be used for the delivery of therapeutic mRNA to DRG.


Asunto(s)
Ataxia de Friedreich/genética , Ganglios Espinales/metabolismo , Proteínas de Unión a Hierro/genética , Lípidos , Nanopartículas , ARN Mensajero , Animales , Modelos Animales de Enfermedad , Femenino , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/terapia , Expresión Génica , Genes Reporteros , Humanos , Inyecciones Espinales , Proteínas de Unión a Hierro/metabolismo , Lípidos/química , Hígado/metabolismo , Mediciones Luminiscentes , Ratones , Imagen Molecular , Nanopartículas/administración & dosificación , Nanopartículas/química , Biosíntesis de Proteínas , ARN Mensajero/administración & dosificación , ARN Mensajero/química , Transducción de Señal , Transfección , Frataxina
7.
Sci Rep ; 5: 18251, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26671574

RESUMEN

Friedreich's Ataxia is a genetic disease caused by expansion of an intronic trinucleotide repeat in the frataxin (FXN) gene yielding diminished FXN expression and consequently disease. Since increasing FXN protein levels is desirable to ameliorate pathology, we explored the role of major cellular proteostasis pathways and mitochondrial proteases in FXN processing and turnover. We targeted p97/VCP, the ubiquitin proteasome pathway (UPP), and autophagy with chemical inhibitors in cell lines and patient-derived cells. p97 inhibition by DBeQ increased precursor FXN levels, while UPP and autophagic flux modulators had variable effects predominantly on intermediate FXN. Our data suggest that these pathways cannot be modulated to influence mature functional FXN levels. We also targeted known mitochondrial proteases by RNA interference and discovered a novel protease PITRM1 that regulates intermediate FXN levels. Treatment with the aforementioned chemical and genetic modulators did not have a differential effect in patient cells containing lower amounts of FXN. Interestingly, a number of treatments caused a change in total amount of FXN protein, without an effect on mature FXN. Our results imply that regulation of FXN protein levels is complex and that total amounts can be modulated chemically and genetically without altering the absolute amount of mature FXN protein.


Asunto(s)
Proteínas de Unión a Hierro/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transducción de Señal , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteolisis , Quinazolinas/farmacología , Expansión de Repetición de Trinucleótido , Ubiquitina/metabolismo , Proteína que Contiene Valosina , Frataxina
8.
Proc Natl Acad Sci U S A ; 109(11): 4146-51, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22315426

RESUMEN

Mammalian cells are capable of delivering multiple types of membrane capsules extracellularly. The limiting membrane of late endosomes can fuse with the plasma membrane, leading to the extracellular release of multivesicular bodies (MVBs), initially contained within the endosomes, as exosomes. Budding viruses exploit the TSG101 protein and endosomal sorting complex required for transport (ESCRT) machinery used for MVB formation to mediate the egress of viral particles from host cells. Here we report the discovery of a virus-independent cellular process that generates microvesicles that are distinct from exosomes and which, like budding viruses, are produced by direct plasma membrane budding. Such budding is driven by a specific interaction of TSG101 with a tetrapeptide PSAP motif of an accessory protein, arrestin domain-containing protein 1 (ARRDC1), which we show is localized to the plasma membrane through its arrestin domain. This interaction results in relocation of TSG101 from endosomes to the plasma membrane and mediates the release of microvesicles that contain TSG101, ARRDC1, and other cellular proteins. Unlike exosomes, which are derived from MVBs, ARRDC1-mediated microvesicles (ARMMs) lack known late endosomal markers. ARMMs formation requires VPS4 ATPase and is enhanced by the E3 ligase WWP2, which interacts with and ubiquitinates ARRDC1. ARRDC1 protein discharged into ARMMs was observed in co-cultured cells, suggesting a role for ARMMs in intercellular communication. Our findings reveal an intrinsic cellular mechanism that results in direct budding of microvesicles from the plasma membrane, providing a formal paradigm for the evolutionary recruitment of ESCRT proteins in the release of budding viruses.


Asunto(s)
Arrestina/química , Arrestina/metabolismo , Membrana Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Factores de Transcripción/metabolismo , Vesículas Transportadoras/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biomarcadores/metabolismo , Membrana Celular/ultraestructura , Exosomas/metabolismo , Espacio Extracelular/metabolismo , Células HEK293 , Humanos , Fusión de Membrana , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Vesículas Transportadoras/ultraestructura , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Liberación del Virus
9.
FASEB J ; 26(5): 1995-2007, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22278941

RESUMEN

The ß2-adrenergic receptor (ß2AR) plays important physiological roles in the heart and lung and is the primary target of ß-agonists, the mainstay asthma drugs. Activation of ß2AR by ß-agonists is attenuated by receptor down-regulation, which ensures transient stimulation of the receptor but reduces the efficacy of ß-agonists. Here we report the identification, through a functional genome-wide RNA interference (RNAi) screen, of new genes critically involved in ß2AR down-regulation. We developed a lentivirus-based RNAi library consisting of 26-nt short-hairpin RNAs (shRNAs). The library was generated enzymatically from a large collection of expressed sequence tag (EST) DNAs corresponding to ∼20,000 human genes and contains on average ∼6 highly potent shRNAs (>75% knockdown efficiency) for each gene. Using this novel shRNA library, together with a robust cell model for ß2AR expression, we performed fluorescence-activated cell sorting and isolated cells that, as a consequence of shRNA-mediated gene inactivation, exhibited defective agonist-induced down-regulation. The screen discovered several previously unrecognized ß2AR regulators, including farnesyl diphosphate synthase (FDPS). We showed that inactivation of FDPS by shRNA, small interfering RNA, or the highly specific pharmaceutical inhibitor alendronate inhibited ß2AR down-regulation. Notably, in human airway smooth muscle cells, the physiological target of ß-agonists, alendronate treatment functionally reversed agonist-induced endogenous ß2AR loss as indicated by an increase in cAMP production. FDPS inactivation interfered with ß2AR internalization into endosomes through disrupting the membrane localization of the Rab5 small GTPase. Furthermore, Rab5 overexpression reversed the deficient receptor down-regulation induced by alendronate, suggesting that FDPS regulates receptor down-regulation in a Rab5-dependent manner. Together, our findings reveal a FDPS-dependent mechanism in the internalization and down-regulation of ß2AR, identify FDPS as a potential target for improving the therapeutic efficacy of ß-agonists, and demonstrate the utility of the unique EST-derived shRNA library for functional genetics studies.


Asunto(s)
Regulación hacia Abajo , Endocitosis , Etiquetas de Secuencia Expresada , Geraniltranstransferasa/metabolismo , Interferencia de ARN , Receptores Adrenérgicos beta 2/metabolismo , Secuencia de Bases , Línea Celular , Cartilla de ADN , Citometría de Flujo , Humanos , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa
10.
Proc Natl Acad Sci U S A ; 107(46): 20120-5, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21041637

RESUMEN

Ivermectin (IVM) is a broad-spectrum anthelmintic used in filariasis control programs. By binding to nematode glutamate-gated chloride channels (GluCls), IVM disrupts neurotransmission processes regulated by GluCl activity. IVM treatment of filarial infections is characterized by an initial dramatic drop in the levels of circulating microfilariae, followed by long-term suppression of their production, but the drug has little direct effect on microfilariae in culture at pharmacologically relevant concentrations. We localized Brugia malayi GluCl expression solely in a muscle structure that surrounds the microfilarial excretory-secretory (ES) vesicle, which suggests that protein release from the ES vesicle is regulated by GluCl activity. Consistent with this hypothesis, exposure to IVM in vitro decreased the amount of protein released from microfilariae. To better understand the scope of IVM effects on protein release by the parasite, three different expression patterns were identified from immunolocalization assays on a representative group of five microfilarial ES products. Patterns of expression suggest that the ES apparatus is the main source of regulated ES product release from microfilariae, as it is the only compartment that appears to be under neuromuscular control. Our results show that IVM treatment of microfilariae results in a marked reduction of protein release from the ES apparatus. Under in vivo conditions, the rapid microfilarial clearance induced by IVM treatment is proposed to result from suppression of the ability of the parasite to secrete proteins that enable evasion of the host immune system.


Asunto(s)
Estructuras Animales/efectos de los fármacos , Estructuras Animales/metabolismo , Antihelmínticos/farmacología , Brugia Malayi/anatomía & histología , Brugia Malayi/efectos de los fármacos , Ivermectina/farmacología , Microfilarias/anatomía & histología , Microfilarias/efectos de los fármacos , Animales , Brugia Malayi/citología , Canales de Cloruro/metabolismo , Clonación Molecular , Proteínas del Helminto/metabolismo , Microfilarias/citología , Datos de Secuencia Molecular , Músculos/efectos de los fármacos , Músculos/metabolismo , Filogenia , Subunidades de Proteína , Receptores de Droga/metabolismo
11.
EMBO Rep ; 11(8): 605-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20559325

RESUMEN

Prolonged stimulation of the beta2-adrenergic receptor (beta2AR) leads to receptor ubiquitination and downregulation. Using a genome-wide RNA interference screen, we identified arrestin domain-containing 3 (ARRDC3) as a gene required for beta2AR regulation. The ARRDC3 protein interacts with ubiquitin ligase neural precursor development downregulated protein 4 (NEDD4) through two conserved PPXY motifs and recruits NEDD4 to the activated receptor. The ARRDC3 protein also interacts and co-localizes with activated beta2AR. Knockdown of ARRDC3 expression abolishes the association between NEDD4 and beta2AR. Furthermore, functional inactivation of ARRDC3, either through small interfering RNA (siRNA)-mediated knockdown or overexpression of a mutant that does not interact with NEDD4, blocks receptor ubiquitination and degradation. Our results establish ARRDC3 as an essential adaptor for beta2AR ubiquitination.


Asunto(s)
Arrestinas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Arrestinas/genética , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Técnicas de Silenciamiento del Gen , Humanos , Datos de Secuencia Molecular , Ubiquitina-Proteína Ligasas Nedd4 , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
12.
Exp Parasitol ; 117(3): 337-47, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17892869

RESUMEN

The 26S proteasome is a proteolytic complex responsible for the degradation of the vast majority of eukaryotic proteins. Regulated proteolysis by the proteasome is thought to influence cell cycle progression, transcriptional control, and other critical cellular processes. Here, we used a bioinformatics approach to identify the proteasomal constituents of the parasitic trematode Schistosoma mansoni. A detailed search of the S. mansoni genome database identified a total of 31 putative proteasomal subunits, including 17 subunits of the regulatory (19S) complex and 14 predicted catalytic (20S) subunits. A quantitative real-time RT-PCR analysis of subunit expression levels revealed that the S. mansoni proteasome components are differentially expressed among cercaria, schistosomula, and adult worms. In particular, the data suggest that the proteasome may be downregulated during the early stages of schistosomula development and is subsequently upregulated as the parasite matures to the adult stage. To test for biological relevance, we developed a transfection-based RNA interference method to knockdown the expression of the proteasome subunit, SmRPN11/POH1. Transfection of in vitro transformed S. mansoni schistosomula with specific short-interfering RNAs (siRNAs) diminished SmRPN11/POH1 expression nearly 80%, as determined by quantitative RT-PCR analysis, and also decreased parasite viability 78%, whereas no significant effect could be seen after treatment with the same amount of an irrelevant siRNA. These results indicate that the subunit SmRPN11/POH1 is an essential gene in schistosomes and further suggest an important role for the proteasome in parasite development and survival.


Asunto(s)
Biología Computacional , Regulación del Desarrollo de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/fisiología , Interferencia de ARN/fisiología , Schistosoma mansoni/fisiología , Animales , Biomphalaria , Humanos , Estadios del Ciclo de Vida/fisiología , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Schistosoma mansoni/genética , Schistosoma mansoni/crecimiento & desarrollo , Alineación de Secuencia , Transfección
13.
J Biol Chem ; 281(23): 16099-107, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16569633

RESUMEN

The AP1 (activator protein 1) transcription factor, c-Jun, is an important regulator of cell proliferation, differentiation, survival, and death. Its activity is regulated both at the level of transcription and post-translationally through phosphorylation, sumoylation, and targeted degradation. The degradation of c-Jun by the ubiquitin proteasome pathway has been well established. Here, we report that POH1, a subunit of the 19 S proteasome lid with a recently described deubiquitinase activity, is a regulator of c-Jun. Ectopic expression of POH1 in HEK293 cells decreased the level of c-Jun ubiquitination, leading to significant accumulation of the protein and a corresponding increase in AP1-mediated gene expression. The stabilization also correlated with a redistribution of c-Jun in the nucleus. These effects were reduced by mutation of a cysteine residue in the Mpr1 pad1 N-terminal plus motif of POH1 (Cys-120) and appeared to be selective for c-Jun, because POH1 had no effect on other proteasomal substrates. Our results identify a novel mechanism of c-Jun regulation in mammalian cells.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Fracciones Subcelulares/metabolismo , Transactivadores/metabolismo , Ubiquitina/metabolismo , Secuencia de Bases , Línea Celular , Cartilla de ADN , Genes Reporteros , Humanos , Inmunoprecipitación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Mol Biochem Parasitol ; 121(1): 163-72, 2002 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-11985875

RESUMEN

We report the cloning and functional analysis of a Pad1 homologue (SmPOH) from Schistosoma mansoni. SmPOH encodes a protein of approximately 35 kDa with high amino acid identities to yeast Pad1 (65%) and its human homologue, POH1 (78%). Members of the Pad1 family are subunits of the 26S proteasome and have been implicated as positive modulators of transcription in yeast. Recombinant SmPOH expressed in COS7 cells exhibited a punctate pattern of distribution throughout the cytoplasm and nucleus, predominantly in the nuclear periphery, a distribution consistent with that of the cellular proteasome. Transient overexpression of SmPOH in COS7 cells caused a dose-dependent stimulation in AP-1 transcriptional activity, as determined by a reporter gene assay. This effect was associated with a pronounced increase in the levels of cellular c-Jun. In vitro degradation assays further demonstrated that SmPOH specifically decreased the rate of c-Jun degradation in a dose dependent manner. Taken together, these results suggest that SmPOH, and possibly other related Pad1 proteins, function as positive modulators of transcription by increasing the stability of cellular c-Jun, making elevated amounts of this protein available for transactivation of AP-1-responsive genes.


Asunto(s)
Resistencia a Múltiples Medicamentos , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Schistosoma mansoni/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Proteínas de Caenorhabditis elegans , Clonación Molecular , Regulación de la Expresión Génica , Proteínas del Helminto/química , Humanos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Filogenia , Complejo de la Endopetidasa Proteasomal , Schistosoma mansoni/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transactivadores/genética , Transactivadores/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...