Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 709746, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504481

RESUMEN

Including a multifunctional, bioregenerative algal photobioreactor for simultaneous air revitalization and thermal control may aid in carbon loop closure for long-duration surface habitats. However, using water-based algal media as a cabin heat sink may expose the contained culture to a dynamic, low temperature environment. Including psychrotolerant microalgae, native to these temperature regimes, in the photobioreactor may contribute to system stability. This paper assesses the impact of a cycled temperature environment, reflective of spacecraft thermal loops, to the oxygen provision capability of temperate Chlorella vulgaris and eurythermic Antarctic Chlorophyta. The tested 28-min temperature cycles reflected the internal thermal control loops of the International Space Station (C. vulgaris, 9-27°C; Chlorophyta-Ant, 4-14°C) and included a constant temperature control (10°C). Both sample types of the cycled temperature condition concluded with increased oxygen production rates (C. vulgaris; initial: 0.013 mgO2 L-1, final: 3.15 mgO2 L-1 and Chlorophyta-Ant; initial: 0.653 mgO2 L-1, final: 1.03 mgO2 L-1) and culture growth, suggesting environmental acclimation. Antarctic sample conditions exhibited increases or sustainment of oxygen production rates normalized by biomass dry weight, while both C. vulgaris sample conditions decreased oxygen production per biomass. However, even with the temperature-induced reduction, cycled temperature C. vulgaris had a significantly higher normalized oxygen production rate than Antarctic Chlorophyta. Chlorophyll fluorometry measurements showed that the cycled temperature conditions did not overly stress both sample types (FV/FM: 0.6-0.75), but the Antarctic Chlorophyta sample had significantly higher fluorometry readings than its C. vulgaris counterpart (F = 6.26, P < 0.05). The steady state C. vulgaris condition had significantly lower fluorometry readings than all other conditions (FV/FM: 0.34), suggesting a stressed culture. This study compares the results to similar experiments conducted in steady state or diurnally cycled temperature conditions. Recommendations for surface system implementation are based off the presented results. The preliminary findings imply that both C. vulgaris and Antarctic Chlorophyta can withstand the dynamic temperature environment reflective of a thermal control loop and these data can be used for future design models.

2.
Life Sci Space Res (Amst) ; 29: 73-84, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33888291

RESUMEN

This paper assesses the impacts to the growth rate, health, oxygen production, and carbon dioxide fixation and nitrogen assimilation of Chlorella vulgaris while sparging the culture with various influent concentrations of carbon dioxide. Selected concentrations reflect a cabin environment with one crew member (0.12% v/v) and four crew members (0.45% v/v). Stepwise, sustained changes in influent carbon dioxide concentration on day four of the eight-day experiments simulated a dynamic crew size, reflective of a planetary surface mission. Control experiments used constant influent concentrations across eight days. Significant changes in growth rate (0.12%-to-0.45%: 57% increase; 0.45%-to-0.12%: 59% reduction) suggest a positive correlation between metabolic activity of C. vulgaris and environmental carbon dioxide concentration. Statistical tests illustrate that algae are more sensitive to reductions in influent carbon dioxide. No specific correlation of the nitrogen assimilation rate to influent carbon dioxide, suggesting a nitrogen-limited or irradiance-limited system. Photosynthetic yield results (0.59-0.72) indicate that the culture was minimally stressed in all tested conditions. This paper compares these results to findings of published, steady-state experiments conducted under similar carbon dioxide environments. The findings presented here imply that a sufficient volume of C. vulgaris, with nutrient supplementation or biomass harvesting, could support the respiratory requirements of a long duration human mission with a dynamic cabin environment and these data can be used in future dynamic models.


Asunto(s)
Chlorella vulgaris , Vuelo Espacial , Biomasa , Dióxido de Carbono , Humanos , Nitrógeno
3.
Life Sci Space Res (Amst) ; 20: 35-52, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30797433

RESUMEN

Bioregenerative technologies, in particular algae photobioreactors, have the potential to provide closed-loop environmental control and life support for human space flight, if robust enough for long-duration deep space missions. This paper reviews the failure modes, causes, and effects of an algal photobioreactor system for use in space flight environmental control and life support applications. The likelihood and severity for each failure is estimated, and associated mitigation or contingency plans are described. Failure modes can stem from either the algae cellular physiology or the engineered system needed for the application and are grouped in this paper accordingly.


Asunto(s)
Sistemas Ecológicos Cerrados , Sistemas de Manutención de la Vida/instrumentación , Microalgas/fisiología , Fotobiorreactores , Nave Espacial/instrumentación , Humanos , Hidrodinámica
4.
Acta Biomater ; 53: 46-58, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28185910

RESUMEN

Chronically implanted neural multi-electrode arrays (MEA) are an essential technology for recording electrical signals from neurons and/or modulating neural activity through stimulation. However, current MEAs, regardless of the type, elicit an inflammatory response that ultimately leads to device failure. Traditionally, rigid materials like tungsten and silicon have been employed to interface with the relatively soft neural tissue. The large stiffness mismatch is thought to exacerbate the inflammatory response. In order to minimize the disparity between the device and the brain, we fabricated novel ultrasoft electrodes consisting of elastomers and conducting polymers with mechanical properties much more similar to those of brain tissue than previous neural implants. In this study, these ultrasoft microelectrodes were inserted and released using a stainless steel shuttle with polyethyleneglycol (PEG) glue. The implanted microwires showed functionality in acute neural stimulation. When implanted for 1 or 8weeks, the novel soft implants demonstrated significantly reduced inflammatory tissue response at week 8 compared to tungsten wires of similar dimension and surface chemistry. Furthermore, a higher degree of cell body distortion was found next to the tungsten implants compared to the polymer implants. Our results support the use of these novel ultrasoft electrodes for long term neural implants. STATEMENT OF SIGNIFICANCE: One critical challenge to the translation of neural recording/stimulation electrode technology to clinically viable devices for brain computer interface (BCI) or deep brain stimulation (DBS) applications is the chronic degradation of device performance due to the inflammatory tissue reaction. While many hypothesize that soft and flexible devices elicit reduced inflammatory tissue responses, there has yet to be a rigorous comparison between soft and stiff implants. We have developed an ultra-soft microelectrode with Young's modulus lower than 1MPa, closely mimicking the brain tissue modulus. Here, we present a rigorous histological comparison of this novel ultrasoft electrode and conventional stiff electrode with the same size, shape and surface chemistry, implanted in rat brains for 1-week and 8-weeks. Significant improvement was observed for ultrasoft electrodes, including inflammatory tissue reaction, electrode-tissue integration as well as mechanical disturbance to nearby neurons. A full spectrum of new techniques were developed in this study, from insertion shuttle to in situ sectioning of the microelectrode to automated cell shape analysis, all of which should contribute new methods to the field. Finally, we showed the electrical functionality of the ultrasoft electrode, demonstrating the potential of flexible neural implant devices for future research and clinical use.


Asunto(s)
Materiales Biocompatibles , Electrodos Implantados , Microelectrodos , Neuronas/fisiología , Animales , Materiales Biocompatibles/efectos adversos , Materiales Biocompatibles/química , Barrera Hematoencefálica , Conductividad Eléctrica , Estimulación Eléctrica , Electrodos Implantados/efectos adversos , Reacción a Cuerpo Extraño/prevención & control , Inflamación/prevención & control , Masculino , Ensayo de Materiales , Microelectrodos/efectos adversos , Polímeros , Ratas , Ratas Sprague-Dawley , Elastómeros de Silicona , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/cirugía , Tungsteno/efectos adversos
5.
Soft Matter ; 11(24): 4847-61, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-25993261

RESUMEN

Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young's modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young's modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications.


Asunto(s)
Materiales Biocompatibles/química , Electrofisiología/instrumentación , Nanocables/química , Neuronas/fisiología , Elastómeros de Silicona/química , Animales , Materiales Biocompatibles/efectos adversos , Células Cultivadas , Módulo de Elasticidad , Conductividad Eléctrica , Electrofisiología/métodos , Microelectrodos , Nanocables/efectos adversos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Elastómeros de Silicona/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA