Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geohealth ; 6(8): e2022GH000595, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36254118

RESUMEN

Extreme heat is a recognized threat to human health. This study examines projected future trends of multiple measures of extreme heat across Texas throughout the next century, and evaluates the expected climate changes alongside Texas athletic staff (coach and athletic trainer) attitudes toward heat and climate change. Numerical climate simulations from the recently published Community Earth System Model version 2 and the Climate Model Intercomparison Project were used to predict changes in summer temperatures, heat indices, and wet bulb temperatures across Texas and also within specific metropolitan areas. A survey examining attitudes toward the effects of climate change on athletic programs and student athlete health was also distributed to high-school and university athletic staff. Heat indices are projected to increase beyond what is considered healthy/safe limits for outdoor sports activity by the mid-to-late 21st century. Survey results reveal a general understanding and acceptance of climate change and a need for adjustments in accordance with more dangerous heat-related events. However, a portion of athletic staff still do not acknowledge the changing climate and its implications for student athlete health and their athletic programs. Enhancing climate change and health communication across the state may initiate important changes to athletic programs (e.g., timing, duration, intensity, and location of practices), which should be made in accordance with increasingly dangerous temperatures and weather conditions. This work employs a novel interdisciplinary approach to evaluate future heat projections alongside attitudes from athletic communities toward climate change.

2.
J Adv Model Earth Syst ; 12(2): e2019MS001958, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32714491

RESUMEN

Numerical weather prediction models require ever-growing computing time and resources but, still, have sometimes difficulties with predicting weather extremes. We introduce a data-driven framework that is based on analog forecasting (prediction using past similar patterns) and employs a novel deep learning pattern-recognition technique (capsule neural networks, CapsNets) and an impact-based autolabeling strategy. Using data from a large-ensemble fully coupled Earth system model, CapsNets are trained on midtropospheric large-scale circulation patterns (Z500) labeled 0-4 depending on the existence and geographical region of surface temperature extremes over North America several days ahead. The trained networks predict the occurrence/region of cold or heat waves, only using Z500, with accuracies (recalls) of 69-45% (77-48%) or 62-41% (73-47%) 1-5 days ahead. Using both surface temperature and Z500, accuracies (recalls) with CapsNets increase to ∼ 80% (88%). In both cases, CapsNets outperform simpler techniques such as convolutional neural networks and logistic regression, and their accuracy is least affected as the size of the training set is reduced. The results show the promises of multivariate data-driven frameworks for accurate and fast extreme weather predictions, which can potentially augment numerical weather prediction efforts in providing early warnings.

3.
Nat Commun ; 11(1): 3319, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620772

RESUMEN

The movement of tropical cyclones (TCs), particularly around the time of landfall, can substantially affect the resulting damage. Recently, trends in TC translation speed and the likelihood of stalled TCs such as Harvey have received significant attention, but findings have remained inconclusive. Here, we examine how the June-September steering wind and translation speed of landfalling Texas TCs change in the future under anthropogenic climate change. Using several large-ensemble/multi-model datasets, we find pronounced regional variations in the meridional steering wind response over North America, but-consistently across models-stronger June-September-averaged northward steering winds over Texas. A cluster analysis of daily wind patterns shows more frequent circulation regimes that steer landfalling TCs northward in the future. Downscaling experiments show a 10-percentage-point shift from the slow-moving to the fast-moving end of the translation-speed distribution in the future. Together, these analyses indicate increases in the likelihood of faster-moving landfalling Texas TCs in the late 21st century.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...