Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296848

RESUMEN

The GW method is a standard method to calculate the electronic band structure from first principles. It has been applied to a large variety of semiconductors and insulators but less often to metallic systems, in particular, with respect to a self-consistent employment of the method. In this work, we take a look at all-electron quasiparticle self-consistent GW (QSGW) calculations for simple metals (alkali and alkaline earth metals) based on the full-potential linearized augmented-plane-wave approach and compare the results to single-shot (i.e., non-selfconsistent) G0W0 calculations, density-functional theory (DFT) calculations in the local-density approximation, and experimental measurements. We show that, while DFT overestimates the bandwidth of most of the materials, the GW quasiparticle renormalization corrects the bandwidths in the right direction, but a full self-consistent calculation is needed to consistently achieve good agreement with photoemission data. The results mainly confirm the common belief that simple metals can be regarded as nearly free electron gases with weak electronic correlation. The finding is particularly important in light of a recent debate in which this seemingly established view has been contested.

2.
J Chem Phys ; 149(14): 144701, 2018 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-30316275

RESUMEN

We present a combined experimental and theoretical study to solve the unit-cell and molecular arrangement of the tetracene thin film (TF) phase. TF phases, also known as substrate induced phases (SIPs), are polymorphs that exist at interfaces and decisively impact the functionality of organic thin films, e.g., in a transistor channel, but also change the optical spectra due to the different molecular packing. As SIPs only exist in textured ultrathin films, their structure determination remains challenging compared to bulk materials. Here, we use grazing incidence X-ray diffraction and atomistic simulations to extract the TF unit-cell parameters of tetracene together with the atomic positions within the unit-cell.

3.
J Am Chem Soc ; 139(37): 12883-12886, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28853870

RESUMEN

Hybrid organic-inorganic compounds attract a lot of interest for their flexible structures and multifunctional properties. For example, they can have coexisting magnetism and ferroelectricity whose possible coupling gives rise to magnetoelectricity. Here using first-principles computations, we show that, in a perovskite metal-organic framework (MOF), the magnetic and electric orders are further coupled to optical excitations, leading to an Electric tuning of the Magneto-Optical Kerr effect (EMOKE). Moreover, the Kerr angle can be switched by reversal of both ferroelectric and magnetic polarization only. The interplay between the Kerr angle and the organic-inorganic components of MOFs offers surprising unprecedented tools for engineering MOKE in complex compounds. Note that this work may be relevant to acentric magnetic systems in general, e.g., multiferroics.

4.
J Phys Chem Lett ; 8(7): 1464-1471, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28296404

RESUMEN

By investigating the optoelectronic properties of prototypical graphene/hexagonal boron nitride (h-BN) heterostructures, we demonstrate how a nanostructured combination of these materials can lead to a dramatic enhancement of light-matter interaction and give rise to unique excitations. In the framework of ab initio many-body perturbation theory, we show that such heterostructures absorb light over a broad frequency range, from the near-infrared to the ultraviolet (UV), and that each spectral region is characterized by a specific type of excitations. Delocalized electron-hole pairs in graphene dominate the low-energy part of the spectrum, while strongly bound electron-hole pairs in h-BN are preserved in the near-UV. Besides these features, characteristic of the pristine constituents, charge-transfer excitations appear across the visible region. Remarkably, the spatial distribution of the electron and the hole can be selectively tuned by modulating the stacking arrangement of the individual building blocks. Our results open up unprecedented perspectives in view of designing van der Waals heterostructures with tailored optoelectronic features.

5.
Phys Chem Chem Phys ; 19(8): 6196-6205, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28230215

RESUMEN

The impact of graphene on the photo-absorption properties of trans- and cis-azobenzene monolayers is studied in the framework of density-functional theory and many-body perturbation theory. We find that, despite the weak hybridization between the electronic bands of graphene and those of the azobenzene monolayers, graphene remarkably modulates the absorption spectra of the adsorbates. The excitation energies are affected via two counteracting mechanisms: substrate polarization reduces the band-gap of azobenzene, and enhanced dielectric screening weakens the attractive interaction between electrons and holes. The competition between these two effects gives rise to an overall blueshift of peaks stemming from intramolecular excitations, and a redshift of peaks from intermolecular ones. Even more interesting is that excitations corresponding to intermolecular electron-hole pairs, which are dark in the isolated monolayers, are activated by the graphene substrate. Our results demonstrate that the photoisomerization process of weakly adsorbed azobenzene undergoes notable changes on a carbon-based substrate.

6.
Acc Chem Res ; 47(11): 3225-32, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25171272

RESUMEN

CONSPECTUS: Organic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces. In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the GW approach for charged and the Bethe-Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, standard DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over. Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule-substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in terms of interfacial electronic structure. We face the problem of a so far hidden variable, namely, electron-vibrational coupling, regarding level alignment at interfaces between organic and inorganic semiconductors. Poly(para-phenylene) adsorbed on graphene and encapsulated in carbon nanotubes represent case studies to demonstrate the impact of polarization effects and exciton delocalization in optoelectronic excitations, respectively. Polaron-induced band narrowing and its consequences for charge transport in organic crystals is exemplified for the HOMO bandwidth in naphthalene crystals. On the basis of these prototypical systems, we discuss what is missing to reach predictive power on a quantitative level for organic/inorganic hybrid materials and, thus, open a perspective toward the computational discovery of new materials for optoelectronic applications.

7.
J Phys Condens Matter ; 26(36): 363202, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25135665

RESUMEN

Linearized augmented planewave methods are known as the most precise numerical schemes for solving the Kohn-Sham equations of density-functional theory (DFT). In this review, we describe how this method is realized in the all-electron full-potential computer package, exciting. We emphasize the variety of different related basis sets, subsumed as (linearized) augmented planewave plus local orbital methods, discussing their pros and cons and we show that extremely high accuracy (microhartrees) can be achieved if the basis is chosen carefully. As the name of the code suggests, exciting is not restricted to ground-state calculations, but has a major focus on excited-state properties. It includes time-dependent DFT in the linear-response regime with various static and dynamical exchange-correlation kernels. These are preferably used to compute optical and electron-loss spectra for metals, molecules and semiconductors with weak electron-hole interactions. exciting makes use of many-body perturbation theory for charged and neutral excitations. To obtain the quasi-particle band structure, the GW approach is implemented in the single-shot approximation, known as G(0)W(0). Optical absorption spectra for valence and core excitations are handled by the solution of the Bethe-Salpeter equation, which allows for the description of strongly bound excitons. Besides these aspects concerning methodology, we demonstrate the broad range of possible applications by prototypical examples, comprising elastic properties, phonons, thermal-expansion coefficients, dielectric tensors and loss functions, magneto-optical Kerr effect, core-level spectra and more.

8.
ACS Nano ; 6(12): 10874-83, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23181564

RESUMEN

Chemical-vapor-deposited large-area graphene is employed as the coating of transparent substrates for the growth of the prototypical organic n-type semiconductor perfluoropentacene (PFP). The graphene coating is found to cause face-on growth of PFP in a yet unknown substrate-mediated polymorph, which is solved by combining grazing-incidence X-ray diffraction with theoretical structure modeling. In contrast to the otherwise common herringbone arrangement of PFP in single crystals and "standing" films, we report a π-stacked arrangement of coplanar molecules in "flat-lying" films, which exhibit an exceedingly low π-stacking distance of only 3.07 Å, giving rise to significant electronic band dispersion along the π-stacking direction, as evidenced by ultraviolet photoelectron spectroscopy. Our study underlines the high potential of graphene for use as a transparent electrode in (opto-)electronic applications, where optimized vertical transport through flat-lying conjugated organic molecules is desired.

9.
Comput Phys Commun ; 182(8): 1657-1662, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21822326

RESUMEN

The treatment of van der Waals interactions in density functional theory is an important field of ongoing research. Among different approaches developed recently to capture these non-local interactions, the van der Waals density functional (vdW-DF) developed in the groups of Langreth and Lundqvist is becoming increasingly popular. It does not rely on empirical parameters, and has been successfully applied to molecules, surface systems, and weakly-bound solids. As the vdW-DF requires the evaluation of a six-dimensional integral, it scales, however, unfavorably with system size. In this work, we present a numerically efficient implementation based on the Monte-Carlo technique for multi-dimensional integration. It can handle different versions of vdW-DF. Applications range from simple dimers to complex structures such as molecular crystals and organic molecules physisorbed on metal surfaces.

10.
J Am Chem Soc ; 133(9): 3056-62, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21309570

RESUMEN

During the last years, self-assembled organic nanostructures have been recognized as a proper fundament for several electrical and optical applications. In particular, phenylenes deposited on muscovite mica have turned out to be an outstanding material combination. They tend to align parallel to each other forming needlelike structures. In that way, they provide the key for macroscopic highly polarized emission, waveguiding, and lasing. The resulting anisotropy has been interpreted so far by an induced dipole originating from the muscovite mica substrate. Based on a combined experimental and theoretical approach, we present an alternative growth model being able to explain molecular adsorption on sheet silicates in terms of molecule-surface interactions only. By a comprehensive comparison between experiments and simulations, we demonstrate that geometrical changes in the substrate surface or molecule lead to different molecular adsorption geometries and needle directions which can be predicted by our growth model.

11.
Phys Rev Lett ; 99(17): 176401, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17995351

RESUMEN

We report ab initio calculations for the interface energetics of a weakly adsorbed organic molecule on a metal surface, which serves as a model interface relevant for organic electronics. The studied thiophene ring is found to be physisorbed on the Cu(110) surface with an adsorption energy of -0.50 eV. Nonlocal correlations, i.e., van der Waals interactions, are solely responsible for the binding in this weakly interacting system, and the choice of the proper exchange-correlation function is crucially important. The adsorption of thiophene lowers the metal work function due to the formation of surface dipoles while no sizable charge transfer is found.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...